Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
   
  •  
    Biologie
    Themen der Chemie
    Deutsch online artikel
    Englisch / Englische
    Franzosisch
    Geographie
    Geschichte
    Informatik
    Kunst
    Mathematik / Studium
    Musik
    Philosophie
    Physik
    Recht
    Sport
    Wirtschaft & Technik



    Biographie

    Impressum

informatik artikel (Interpretation und charakterisierung)

Bildung

Magneto-optische speicher - die alternative


1. Java
2. Viren



Da sie nur einmal beschreibbar und nicht löschbar sind, scheiden die WORMs jedoch als echter Massenspeicher aus. Magneto-optische Festplatten sind die bessere Alternative. Bei der magneto-optischen Aufzeichnungstechnologie handelt es sich um eine Kombination aus magnetischen und optischen Techniken. Ein Aufzeichnungsverfahren, das nach dem digitalen Prinzip arbeitet muß zwei verschiedene Zustände an einer Stelle des Mediums erzeugen und diese beiden Zustände beim Lesen unterscheiden können. Dies erreichen unterschiedlich starke Laserstrahlen in Verbindung mit einem Elektromagneten.
Das Beschreiben einer magneto-optischen Disk erfolgt durch einen energiereichen Laserstrahl. Dieser Laserstrahl erhitzt die Stellen, an denen aufgezeichnet werden soll, auf die materialspezifische Curie-Temperatur. Wird sie erreicht, so genügt bereits ein schwaches äußeres Magnetfeld, um die Magnetisierungsrichtung des Datenträgermaterials zu ändern. Bei diesem Vorgang werden die Informationen buchstäblich gelöscht. Auf der anderen Seite der optischen Platte befindet sich ein Elektromagnet, der ein magnetisches Feld erzeugt, welches die neue magnetische Orientierung der Aufzeichnungszone bewirkt. Die Magnetisierungsrichtung liegt dabei senkrecht zur Plattenoberfläche. Bei hohen Leistungen des Lasers besteht jedoch die Gefahr, daß angrenzende Zonen durch Wärmeleitung ebenfalls erhitzt und durch das Magnetfeld entsprechend beeinträchtigt werden. Der Laserstrahl muß daher präzise fokussiert sein. Die Leistungen der verwendeten Laser liegen dabei im Milliwatt-Bereich, die Curie-Temperaturen hingegen bei einigen hundert Grad Celsius.

Wie auch auf herkömmlichen Datenträgern, werden auf der magneto-optischen Disk zwei verschiedene magnetische Zustände dargestellt: positiv und negativ. Unterschieden werden die beiden Zustände durch die Polarisation bei der Reflexion des energieärmeren Lese-Laserstrahls. Der reflektierte Strahl ist, je nach Ausrichtung des Magneten, polarisiert (man spricht vom sogenannten Kerr-Effekt). Der Informationsinhalt in den Zonen, die nicht durch den Laserstrahl erhitzt werden , bleibt vom Magnetfeld unbetroffen und wird daher nicht verändert.

Bei einer magneto-optischen Disk wird also stets zuerst gelöscht, danach beginnt erst der eigentliche Schreibvorgang. Dies erklärt auch, warum ein Schreibvorgang auf eine magneto-optische Disk wesentlich zeitaufwendiger ist als bei herkömmlichen Datenträgern.

Die magneto-optische Technologie erfordert beim Schreib-/Lesekopf eine komplizierte Optik. Dies wirkt sich natürlich auf Größe und Gewicht des Schreib-/Lesekopfes negativ aus. Ein großer und schwerer Kopf läßt sich nicht so schnell bewegen und beeinträchtigt daher die Zugriffsgeschwindigkeit.

Diese Faktoren erklären, warum die magneto-optischen Laufwerke wesentlich geringere Leistungsdaten in bezug auf Schreib-/Lesevorgänge aufweisen als herkömmliche Festplatten. Magneto-optische Laufwerke können somit als \"Zwitter\" zwischen rein optischen Systemen bezeichnet werden.

Die Vorteile von magneto-optischen Disks liegen klar auf der Hand: Im 5 1/4-Zoll-Format können sie zwischen 600MByte und 1GByte an Daten aufnehmen. Die kleineren 3 1/2-Zoll-Disks fassen immerhin 128 MByte Daten. Zudem sind sie im Gegensatz zu Festplatten unempfindlich gegenüber magnetischen Feldern, da sich die magnetische Struktur nur ändern läßt, wenn die notwendige Temperatur an der entsprechenden Stelle anliegt. Sie können daher Datensicherheit auf lange Sicht gewähren. Aber auch andere äußere Einflüsse wie Feuchtigkeit, Hitze oder fahrlässige Handhabung fügen den Disks keinen Schaden zu. Eine Reihe von beschreibbaren Disks sind auf 10 bis 100 Jahre Datensicherheit konzipiert.

Die Einsatzgebiete der magneto-optischen Laufwerke ergeben sich aus ihren Vorteilen. Große Datenmengen stellen für diese Laufwerke kein Problem dar. Wer sich schon einmal an einem Farbscanvorgang mit 24-Bit-Farbtiefe versucht hat, wird sich ein entsprechendes Laufwerk sehnlichst gewünscht haben. Mehrere MByte Daten sind da schnell erreicht und auch die größte Festplatte ist irgendwann zu klein. Aus diesem Grund bieten sich MO-Disks im Bereich der Printmedien als Datenträger geradezu an. Ähnliches gilt für CAD und Grafik. Aber auch als Backup- beziehungsweise Archivierungsmedium bietet sich die MO an. Zudem ist die MO-Disk leicht aus dem Laufwerk zu entnehmen und zu transportieren.

Beim Phasenwechselverfahren (Phase Changa Technology) handelt es sich im eigentlichen Sinne um keine neue Technologie. Neu ist nur das Einsatzgebiet. Bislang wurde dieses Verfahren, das bereits seit Jahrzehnten bekannt ist, hauptsächlich bei professionellen WORM-Laufwerken eingesetzt. Mittlerweile findet es auch bei wiederbeschreibbaren optischen Platten Verwendung. Bei dieser Technologie handelt es sich um ein rein optisches Aufzeichnungsverfahren, das ohne Elektromagneten auskommt. Aufgezeichnet und gelesen werden die Daten durch zwei unterschiedlich starke Laserstrahlen. Zum Schreiben wird die Intensität des Laserstrahls mehr als verzehnfacht.

Zur Verdeutlichung: Die Leistung des Lasers liegt dann ungefähr zwischen 18 bis 20 Milliwatt. Dies genügt, um die entsprechende Schicht bis zum Schmelzpunkt zu erhitzen. Die Stellen, an denen der Schreiblaser auftrifft, ändern ihre Reflexion beim Abtasten durch den Leselaser. Beim Phasenwechselverfahren wird durch Fotozellen zwischen zwei Intensitäten des Lesestrahls differenziert - im Gegensatz zur magneto-optischen Technologie, wo die Polarisation des Lichtes entscheidend ist. Hat die Intensität nach der Reflexion stark abgenommen, so steht dies für den Zustand 1, wird der Laserstrahl ohne Intensitätsverlust reflektiert, beschreibt dies den Zustand 0. Der starke Schreiblaser ändert beim Schreiben durch Erhitzen und rasches Abkühlen die Atomstruktur und damit die Reflexionsfähigkeit des Materials. Dabei macht man sich die Tatsache zunutze, daß einige Materialien mit einem Laserstrahl zwischen einem amorphen und einem kristallinen Zustand hin- und hergeschaltet werden können. Im amorphen Zustand weisen diese Materialien einen deutlich geringeren Reflexionsgrad auf als im kristallinen. Der amorphe Zustand, beziehungsweise der binäre Zustand 1, wird durch die Erhitzung auf den Schmelzpunkt erreicht.

Um die Teilchen wieder in den kristallinen Zustand zu versetzen, genügt es, einen schwächeren Laserstrahl zu verwenden. Die Teilchen werden dann zwar auch erwärmt, aber nicht bis zum Schmelzpunkt gebracht. Aufgrund der durch die zugeführte Wärme gewonnenen Bewegungsfreiheit richten sie sich wieder in kristallinen Strukturen aus. Dies bedeutet, daß an dieser Stelle wieder der Zustand 0 erreicht wird. Die Unterschiede in der Intensität der Reflexion sind dabei wesentlich größer als die Polarisationsunterschiede beim magneto-optischen Verfahren.

Gegenüber dem magneto-optischen Verfahren kann das Phasenwechselverfahren mit einer deutlich schnelleren Geschwindigkeit aufwarten. Dies begründet sich darin, daß vor dem Beschreiben der Platte die darauf vorhandene Information nicht erst gelöscht werden muß. Der optische Datenträger kann bei nur einer Umdrehung beschrieben werden, während bei dem magneto-optischen Verfahren stets derer drei notwendig sind. Dieses optische Laufwerk ist aufgrund der Technologie kostengünstiger herzustellen als ein magneto-optisches Laufwerk. Der Schreib-/Lesekopf ist weniger komplex und weist daher auch ein wesentlich geringeres Gewicht auf. Allein durch Veränderung der Intensität kann mit einem Laser geschrieben und gelesen werden. Ein leichterer Schreib-/Lesekopf verkürzt die Zugriffszeit erheblich, da er wesentlich schneller an die entsprechende Stelle der Platte gefahren werden kann. In bezug auf die Zugriffszeit sind die technischen Möglichkeiten mit Sicherheit noch nicht ausgeschöpft, auch wenn von Laufwerken, die mit dem Phasenwechselverfahren arbeiten, schon Zugriffszeiten erreicht werden, die im Bereich älterer RLL-Festplatten liegen. Denkbar wäre beispielsweise auch eine Erhöhung der Umdrehungszahl. Fortschritte werden in der Verbesserung der Aufzeichnungsdichte erzielt. Erst wenn die Zugriffszeiten mit denen magnetischer Speicher vergleichbar sind, werden beide Verfahren in direkter Konkurrenz zueinander stehen. Hinsichtlich der Kapazität lassen sich bei optischen Speichermedien zwei Aufzeichnungsverfahren unterscheiden. Zum einen findet das CAV-Verfahren (CAV = Constant Angular Velocity) Verwendung. Hierbei bleibt die Drehzahl der Platte konstant. Daher ist die Dichte der Daten in den inneren Bereichen der Platte größer als in den äußeren. Im Gegensatz dazu steht das CLV-Verfahren (CLV = Constant Linear Velocity). Bei diesem Verfahren wird die Fläche der Platte effektiver genutzt. Die Dichte der Informationen ist stets gleich, sowohl auf den äußeren Spuren als auch auf den inneren. Die insgesamt größere Gesamtkapazität wird jedoch durch eine längere Zugriffszeit erkauft, da die Drehzahl der Platte während des Durchlaufs geändert werden muß und eine komplexere Datenorganisation erforderlich ist.

Der Trend geht eindeutig zu wiederbeschreibbaren Opto-Laufwerken. Die Zukunft gehört Kombi-Laufwerken, die sowohl WORMs als auch CDs und Phase-Change-Disks lesen können, welche zudem in der Lage sind, unterschiedliche Datenträger zu beschreiben. Starke Zuwachsraten verzeichnen auch die \"Jukeboxen\", die mechanisch mehrere Disks verwalten können. Im Vordergrund stehen bei den Jukeboxen nach wie vor die CD-ROMs.

Auch bei den Materialien und den Herstellungsverfahren wird die Forschung vorangehen, so daß sinkende Preise und höhere Leistungen zu erwarten sind. Die optischen Speichermedien sind jedoch beileibe nicht die einzigen, auf denen die Entwicklung weitergeht. Festplatten werden immer schneller und bieten mehr Speicherkapazität bei sinkender Gerätegröße. Ebenso macht im Bereich der Archivierung die Entwicklung der Bandlaufwerke Fortschritte. Selbst die altbewährte Diskette ist vom Fortschritt nicht ausgeschlossen und wird mit einem Vielfachen der heutigen Speicherkapazität aufwarten können. Die ultimative Technologie wird es daher nicht geben. Der Anwender wird stets nach Einsatzgebiet, zur Verfügung stehenden Mitteln und Speicheranforderungen abwägen müssen, für welche Technologie er sich entscheidet. Dabei wird es eher ein Miteinander als ein Gegeneinander der einzelnen Technologien geben.

 
 




Datenschutz

Top Themen / Analyse
Wieso eigentlich "Oberon"?
Der Sinn und Zweck von Samba
Sortieren von Dateien mit großen Datensätzen
Windows --
Eingabe / Ausgabe von Zeichenketten
Doch wie funktioniert so ein Provider eigentlich?
Schnittstelle und Bussysteme
9-Nadeldrucker -
The future of education
Beschreibung des Lernprogramms





Datenschutz

Zum selben thema
Netzwerk
Software
Entwicklung
Windows
Programm
Unix
Games
Sicherheit
Disk
Technologie
Bildung
Mp3
Cd
Suche
Grafik
Zahlung
Html
Internet
Hardware
Cpu
Firewall
Speicher
Mail
Banking
Video
Hacker
Design
Sprache
Dvd
Drucker
Elektronisches
Geschichte
Fehler
Website
Linux
Computer
A-Z informatik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.