Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


mathematik artikel (Interpretation und charakterisierung)

Algorithmus

Funktionen

Verschiedene arten von differentialgleichungen





Man unterscheidet zwischen gewöhnlichen Differentialgleichungen, d.h. es tritt nur eine unabhängige Veränderliche auf, nur eine Funktion ( z.B.: y = y' ), partiellen Differential- gleichungen, welche mehrere Funktionen enthalten ( z.B.: y = y' + g (x) ), auch als "Differentialgleichungen mit separierbaren Variablen" bezeichnet, da man in ihnen zum Auffinden einer Lösungsfunktion die verschiedenen Variablen trennen muss. Weitere Formen von Differentialgleichungen sind Bernoullische Differentialgleichungen und riccatische Differentialgleichungen auf die hier aber nicht näher eingegangen werden soll.
Die Ordnung einer Differentialgleichung wird durch den Grad der höchsten auftretenden Ableitung bestimmt :

z.B.: >>>>> Differentialgleichung erster Ordnung

>>>>> Differentialgleichung zweiter Ordnung

>>>>> Differentialgleichung n-ter Ordnung

Im allgemeineren Fall der Differentialgleichung y' = f (x,y) kann man eine erste Übersicht über die Lösungskurven mit Hilfe des Richtungsfeldes gewinnen: Dazu wird jedem Punkt (x,y) aus der Definitionsmenge von f eine Richtung zugeordnet.


Richtungsfeld:










Die Lösungen von y' = f(x,y) entsprechen dann Kurven ( Integralkurven ) die in jedem Punkt (x,y(x)) die durch y' = f(x,y(x)) vorgeschriebene Steigung besitzen. Jedes Tripel heißt Linienelement, und die Gesamtheit der Linienelemente heißt Richtungsfeld (s.o.) In geometrischer Hinsicht besteht die Aufgabe des Lösens einer Differentialgleichung der Form y' = f (x,y) alle Kurven aufzufinden, die auf das Richtungsfeld passen.

 
 



Datenschutz

Top Themen / Analyse
Die Grundlagenkrise
Turbulenz:
Hexagesimalsystem
Axiomatisierung
BERECHNUNG VON WAHRSCHEINLICHKEITEN
Rechenmaschine von Wilhelm Schickard
Terme vereinfachen
Der goldene Schnitt in der Musik
Das alter Griechenland
Historische Entwicklung der Philosophie der Mathematik




Datenschutz

Zum selben thema
Funktionen
Einstein
Pythagoras
System
Algorithmus
Formel
Geometrie
A-Z mathematik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.