Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


biologie artikel (Interpretation und charakterisierung)

Immunreaktion



Antigen-Antikörper-Reaktion Kommt ein Antigen erstmals in den Körper, so läuft die Immunreaktion in 3 Phasen ab. In der ersten, der Erkennungsphase, muß das Antigen zunächst gebunden und einigen T-Lymphozyten präsentiert werden. Diese werden dadurch aktiviert und zur Teilung angeregt. Es entstehen vermehrt T-Helfer-Zellen; sie lösen bei denjenigen B-Lymphozyten Teilung aus, die Antikörper gegen das gleiche Antigen bilden können.
In der zweiten Phase, der Differenzierungsphase, vermehren sich die B-Lymphozyten stark und differenzieren sich dabei hauptsächlich zu Plasmazellen.; einige werden zu Gedächtniszellen. Die starke Vermehrung der Lymphozyten ist als Schwellung der Lymphknoten in der Nähe eines Infektionsherdes spürbar.
In der dritten Phase, der Wirkungsphase, erfolgt die Antigen-Antikörper-Reaktion und es entsteht der Immunkomplex
- Immunkomplexe können das Komplementsystem aktivieren, dessen Proteine dann eine ganze Abfolge von Reaktionen auslösen. Dazu gehört der Abbau von Fremdproteinen, eine Stimulierung der phagozytierenden Zellen und eine chemotaktische Anlockung weiterer solcher Zellen. Diese nehmen dann die Immunkomplexe auf und bauen sie ab. Ist der Abbau verzögert, so kommt es zu Störungen in Form von Allergien.
- Immunoglobuline können sich an die Oberfläche eines aus einer Zelle ragenden Antigens (z.B. einer Bakterienzellwand) anheften und die Zellen, die viele Antigene besitzen, verkleben (Agglutination).
Zugleich erhöht sich die Durchlässigkeit der Kapillarwände für Proteine, sodaß vermehrt Antikörper aus dem Blut ins Gewebe gelangen. Infolgedessen tritt auch mehr Flüssigkeit aus den Kapillaren aus, die Infektionsstelle schwillt an
In der vierten Phase, der sogenannten Abschaltphase, hört infolge der Wirkung der T-Unterdrücker-Zellen die Immunreaktion allmählich auf. Wenn kein Antigen mehr vorhanden ist, werden auch keine neuen Antikörper mehr gebildet.



Infektionen


Infektionen werden durch Mikroorganismen, vor allem Bakterien, und durch Viren verursacht. Eine Infektion des Organismus muß allerdings nicht immer zu einer Erkrankung führen; so sind manche Personen zwar Träger und Verbreiter von Krankheitserregern, selbst aber nicht krank.


. Immunreaktion gegen Bakterien
Sie hängt davon ab, ob sich die Bakterien außerhalb der Zellen oder intrazellulär vermehren. Bei extrazellulärer Vermehrung führen die Antigene der Bakterienoberfläche rasch zu den geschilderten Immunreaktionen. Geben die Bakterien giftige Stoffe (Toxine) ab, so werden diese als freie Antigene von Antikörpern gebunden und unschädlich gemacht, sofern die Giftproduktion nicht zu rasch zunimmt. Die an die Bakterienoberfläche gebundene Antikörper verursachen zusätzlich einen Angriff des Komplementsystems, welches die Bakterienmembran auflösen kann.
Schleimhäute geben im Sekret größere Menge von Antikörpern der IgA-Gruppe ab, wenn B-Lymphozyten zu deren Bildung stimuliert sind. Die Antikörper binden Bakterien, sodaß diese die Schleimhautzellen nicht mehr angreifen können. IgA-Moleküle treten auch in der Muttermilch auf; die Antikörper bildenden Zellen liegen in den Lymphknoten der Brustdrüse. Sie stammen aus Lymphknoten des Darmbereichs, wo sie Antikörper "kennen gelernt" haben. Die IgA-Antikörper schützen daher den Säugling bei Darminfektionen.
Vermehren sich Bakterien intrazellulär (z.B. Tuberkulosebakterien), so werden die befallenen Zellen von T-Killer-Zellen angegriffen, weil die Membran solcher Zellen veränderte Proteine aufweist. Diese Form der Immunreaktion erfolgt allerdings langsamer.
Gegen Tuberkulosebakterien werden die meisten Menschen immun. Daß sie es sind, zeigt der Tuberkulin-Hauttest, bei dem Tuberkulin, ein Extrakt aus Tuberkelbakterien, als Antigen in die Haut eingerieben wird. In der Regel kommt es dort im Verlauf von 2-4 Tagen zu einer schwachen Entzündungsreaktion (Rötung). Die dort entstehenden Immunkomplexe aktivieren nämlich das Komplementsystem. Dadurch werden Makrophagen und T-Helferzellen chemotaktisch zu der Stelle gelockt, wo das Antigen eindringt. Da diese Effekte zum Teil unspezifisch sind (z.B. die Anlockung der Makrophagen), kann eine in Gang gekommene Immunreaktion auch oft einen vorübergehenden Schutz gegen solche Mikroorganismen bieten, gegen die noch gar keine Immunität erworben wurde.


. Immunreaktion gegen Viren
Viren können sich nur in den Wirtszellen vermehren. Da freie Antikörper nicht in Zellen eindringen, ist die Immunreaktion über Antikörper nur gegen solche Viren wirksam, die sich nicht in Zellen befinden. Werden Antikörper an die Virusoberfläche gebunden, so kommt durch Aktivierung des Komlementsystems eine Zerstörung der Viren in Gang. Häufig tragen Zellen, die von Viren befallen sind, in ihrer Zellmembran Komponenten, die von den betreffenden Viren stammen. T-Killer-Zellen erkennen diese Komponenten und töten die infizierten Zellen ab. Die Zerstörung körpereigener Zellen ist also bei einer Bekämpfung von Virusinfektionen ein normaler Vorgang. Die Aktivität der T-Killer-Zellen wird durch MHC-Proteine reguliert; diese haben also einen Einfluß darauf, wie gut das Immunsystem auf Virusinfektionen (z.B.: Grippeviren) reagieren kann.
Viele Viren besitzen eine große Variabilität in ihren Oberflächenstrukturen (sie liegen als verschiedene Stämme vor; dies gilt z.B.: für Grippe-, Schnupfen-, Maul-und Klauenseuche-Viren) oder sie verändern diese Strukturen relativ rasch und bilden neue Stämme (z.B.: das Grippevirus). Gegen derartige Viren ist die erworbene Immunität in der Regel viel weniger wirksam als gegen Bakterien, da bei jedem neuen Virusstamm eine zusätzliche Immunität erworben werden muß.

. Immunreaktion gegen tierische Einzeller
Malaria, Amöbenruhr und Schlafkrankheiten werden von Einzellern hervorgerufen. Auch diese Organismen werden vom Körper durch Immunreaktionen bekämpft, die allerdings noch nicht völlig geklärt sind. Der Malariaerreger lebt lange Zeit intrazellulär (in Leberzellen bzw. Erythrozyten??) und verändert dabei die Zellmembran der Wirtszellen kaum. Daher erfolgt in dieser Zeit keine Immunreaktion. Trypanosomen (Erreger der Schlafkrankheit) entgehen der gegen sie gerichteten Immunreaktion teilweise dadurch, daß sie die als Antigene wirksamen Proteine ihrer Zellmembran rasch verändern. Eine zweite Infektion wird daher von den Gedächtniszellen vielfach nicht erkannt.



Allergische Reaktionen

Übermäßige oder ungeeignete Immunreaktionen führen zu Krankheits-erscheinungen, die man zusammenfassend als allergisch bezeichnet. Entsprechend der Komplexität der Immunreaktion kann die Störung an ganz unterschiedlichen Stellen eintreten. Daher gibt es sehr verschiedene allergische Reaktionen.


. Anaphylaktische Reaktion
Bei einer ersten Reaktion eines Antigens bilden sich auch Antikörper der IgE-Klasse. Diese bilden sich an Mastzellen(??). Normalerweise verhindern T-Unterdrücker-Zellen, daß zu viele IgE-Antikörper gebildet und Mastzellen damit besetzt werden. Wenn die Unterdrücker-Zellen zu wenig wirksam sind, lagern sich zu viele IgE-Moleküle an Mastzellen an und es tritt eine Überempfindlichkeit (Allergie) gegnüber dem Antigen auf. Die ist vor allem bei sonst meist harmlosen Antigenen (Blütenstaub, Staub, Erdbeeren, Fischeiweiß, Arzneimittel) zu beobachten. Solche Allergien sind z.B.: Heufieber, Hautausschläge, allergisches Asthma. In manchen Fällen kann eine schwere Kreislaufstörung (anaphylaktischer Schock mit Blutdruckabfall, Schwäche, Pulsbeschleunigung) auftreten. Vor allem bei heftigen Allergien gegen Insektenstiche kann ein solcher Schock lebensgefährlich werden. Die anaphylaktische(??) Reaktion ist auf die Stimulierung übermäßig vieler Mastzellen zurückzuführen.

. Autoimmun-Erkrankungen
Immunreaktionen können erst einige Tage bis Wochen nach der Geburt ablaufen. Erst dann ist die Entwicklung des Immunsystems abgeschlossen. Körperfremde Stoffe, die vorher in den Körper gelangen, lösen keine Immunreaktion aus; sie werden "geduldet" (Immuntoleranz). Die Unterscheidung körperfremder und körpereigener Stoffe "lernt" das Immunsystem bereits während der Embryonalzeit.
Mitunter werden Antikörper auch gegen körpereigene Gewebe gebildet; die führt zu Autoimmun-Krankheiten. Die Ursachen dafür sind nur teilweise bekannt. Manche Körperzellen besitzen normalerweise keine MHC-Proteine(??) in ihrer Zellmembran. Wenn solche Zellen infolge eines Fehlers im Zellgeschehen dann doch MHC-Proteine bilden, so reagieren T-Zellen darauf wie auf Antigene, obwohl es sich um körpereigene Zellbestandteile handelt. So wird eine Immunreaktion gegen diese Zellen ausgelöst. Eine bestimmte Form der Zuckerkrankheit (Diabetes mellitus), die vorwiegend bei Jugendlichen auftritt, ist eine solche Autoimmun-Erkrankung. In diesem Fall werden Inselzellen des Pankreas als körperfremd angesehen und abgebaut.
In anderen Fällen werden Membranproteine bestimmter Zellen als fremd angesehen.


. Immunkomplex-Überreaktion
Die Immunkomplexe werden normalerweise rasch abgebaut. Tritt eine Verzögerung ein, so kommt es zu einer heftigen Entzündung, die bis zur Gewebsschädigung führen kann. In manchen Fällen werden dann Antikörper gegen die Immunkomplexe gebildet, sodaß Autoimmun-Reaktionen hinzukommen. Die Immunkomplexe können auch im Körper wandern und vielerorts Entzündungen auslösen. Dies ist z.B.: bei der Allergie gegen Penicillin der Fall; es kommt dann zu Nesselfieber (allgemeine Entzündung der Haut) und zu Gelenk- und Muskelschmerzen. Immunkomplexe vermögen sich an vielen Stellen des Körpers vorübergehend festzusetzen. Erfolgt dies in den Nieren-Glomeruli(??), so entsteht eine Nierenentzündung. In Gelenken verursachen Immunkomplexe arthritische Entzündungen, die oftmals im Körper "wandern". Auch andere rheumatische Erkrankungen gehen auf Immunkomplex-Überreaktion oder auf Autoimmun-Reaktion zurück.


Organverpflanzung; Abstossung von Fremdgewebe

Verpflanzt man ein Organ in einen fremden Körper, so bildet dieser Antikörper gegen das fremde Gewebe. Einige der Proteine des transplantierten Gewebes sind nämlich mit dem Immunsystem des eigenen Körpers nicht verträglich; sie wirken als Antigene. Vor allem sind dies MHC-Proteine, die dadurch ja ihren Namen erhalten haben. Wenn eine Reaktion der Gewebeverträglichkeits-Antigene mit Antikörpern eingetreten ist, werden die T-Killer-Lymphozyten tätig und zerstören das fremde Gewebe.
Die Verpflanzung von Organen von einem Körper in einen anderen ist dann erfolgreich, wenn beide genau die gleichen Gewebeverträglichkeits-Antigene besitzen, was bei der großen Variationsbreite fast nur bei eineiigen Zwillingen der Fall ist. In allen anderen Fällen tritt eine Immunreaktion ein. Je nach dem Grad der Übereinstimmung der MHC-Proteine von Spender und Empfänger fällt die Reaktion stärker oder schwächer aus. Man muß sie natürlich möglichst gering halten. Aus diesem Grunde müssen die MHC-Proteine von Spender und Empfänger wenigstens teilweise übereinstimmen. Darüber hinaus muß die Immunreaktion durch Stoffe unterdrückt werden, die Lymphozyten funktionsunfähig machen (immunsuppressive Stoffe). Dazu gehören zellteilungshemmende Stoffe, welche die Vermehrung der Lymphozyten verhindern, oder Corticosteroide (Hormone der Nebennierenrinde). Diese Substanzen führen allerdings zu einer Schwächung des ganzen Immunsystems. Spezifischer wirkt das aus einem Pilz gewonnene Cyclosporin, das die Aktivierung von T-Zellen hemmt, ohne die B-Zellen zu beeinflussen. Nicht jedes Organ hat bei Verpflanzung die gleiche Wirkung auf das Immunsystem des Empfängers; die Hornhaut des Auges und Gehörknöchelchen lösen bei einer Verpflanzung normalerweise keine Immunreaktion aus. Sie zeigen Immuntoleranz. Die Transplantation einer Niere ist immunologisch viel leichter zu beherrschen als eine Verpflanzung von Herz oder Leber.



Schutzimpfung

Übersteht ein Mensch eine Infektionskrankheit, dann ist er in der Regel sein Leben lang vor einem neuen Ausbruch dieser Krankheit bewahrt. Gedächtniszellen gegen diese Krankheit bleiben also lange erhalten und geben dadurch Schutz vor einer neuen Ansteckung derselben Art; der Körper ist gegen die betreffende Krankheit "immun" geworden. Auf dieser Tatsache beruht die erstmals von dem englischen Arzt Jenner 1796 angewandte Schutzimpfung zur Immunisierung des Körpers.
. Bei der aktiven Immunisierung regt man den Körper selbst auf eine für ihn ungefährliche Weise zur Bildung der Antikörper an. Dazu injiziert man abgetötete oder abgeschwächte Krankheitserreger. Diese rufen keine Krankheit hervor, veranlassen aber den Körper zu einer Immunreaktion. Tritt einige Zeit später eine natürliche Infektion durch den Erreger ein, erfolgt sofort eine heftige Reaktion, die den Erreger unschädlich macht. Da Gedächtniszellen sehr langlebig sind, wirkt eine aktive Immunisierung für längere Zeit vorbeugend.
. Bei der passiven Immunisierung verlegt man die Bildung der Antikörper auf ein anderes Lebewesen und überträgt dessen Serum, in dem die Antikörper enthalten sind, in den Körper des Erkrankten. Die passive Immunisierung dient zur Heilung bereits ausgebrochener Infektionskrankheiten. Durch die von außen zugeführten Antikörper wird der Organismus in seinem Kampf gegen die Erreger unterstützt, bis genügend eigene Antikörper entstanden sind.
Zur Gewinnung von Diphtherieheilserum spritzt man, nach Emil von Behring (1894), Pferden mehrfach Diphtherieerreger ein, sodaß sich im Pferdeblut reichlich Antikörper dagegen bilden. Sie werden aus abgezapftem Blut gewonnen und längere Zeit steril aufbewahrt. Rechtzeitig einem Diphtheriekranken eingespritzt vermag das Heilserum in der Regel den vollen Ausbruch der Krankheit zu verhindern. Eine passive Schutzimpfung ist normalerweise nur wenige Wochen wirksam. Der menschliche Körper bildet nämlich gegen die Serumproteine des Pferdes seinerseits Antikörper. Diese fällen die fremden Antikörper bald aus. Wird ein zweites Mal Pferdeserum injiziert, fällt die Immunreaktion oft sehr heftig aus (anaphylaktischer Schock). Zur Vermeidung solcher Reaktionen verwendet man bei wiederholter Impfung, zum Beispiel gegen Wundstarrkrampf(??) ein Humanserum oder gereinigte Antikörper.

 
 

Datenschutz
Top Themen / Analyse
Arrow Der Ernährungskreis
Arrow Vortrag: Knochenbau
Arrow Wespen
Arrow Primärförderung - ERDGAS UND ERDÖL
Arrow Lebensmittel als Bedruckstoff
Arrow Insekten
Arrow Anpassungen der Pflanzen an ihren Standort
Arrow Die Honigbienen
Arrow Mikrostrabismus
Arrow Erdölgewinnung


Datenschutz
Zum selben thema
icon Verdauung
icon Drogen
icon Pubertät
icon Enzyme
icon Erbkrankheiten
icon Rauchen
icon Luft
icon Immunsystem
icon Parasit
icon Verdauung
icon Gedächtnis
icon Ökosystem
icon Genetik
icon Biotop
icon Radioaktivität
icon Hygiene
icon Gehirn
icon Tier
icon Botanik
icon Pflanzen
icon Gen
icon Chromosomen
icon Lurche
icon Depression
icon Dinosaur
icon Infektion
icon Auge
icon Allergie
icon Alkohol
icon Insekte
icon Herz
icon Proteine
icon Wasser
icon Ozon
icon DNA
icon Ökologie
icon Spinnen
icon Blut
icon Klonen
icon Hepatitis
icon Fotosynthese
icon Krebs
icon Hormone
icon Schmerz
icon Fortpflanzung
icon Röteln
icon Mutationen
icon Diabetes
icon Antibiotika
icon Eiweißsynthese
icon Körper
A-Z biologie artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution