Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


biologie artikel (Interpretation und charakterisierung)

Die bohranlage



Typische Bohranlagen, wie sie heute beim Rotary-Bohren eingesetzt werden, sind je nach der mit ihnen zu erzielenden Teufe mit abklappbaren fahrbaren Masten ausgestattet oder so konstruiert, daß sie mit Hilfe von Kränen in wenigen Tagen demontiert, transportiert und wieder aufgebaut werden können. Der Mast oder Bohrturm besteht aus einer etwa 30 bis 40 Meter hohen Stahikonstruktion, in der der Kran ein Flaschenzug mit einer Hebekapazität bis zu 1000 Tonnen bei schwerem Bohrgerät - untergebracht ist. Sein Unterbau umfaßt den Drehtisch, die erforderlichen Antriebe und den Bohrloch-kopf mit seinen vielen technischen Absicherungen (Blow-out-Preventer). Das zum Bohren benötigte Gestänge besteht aus starkwandigen Rohren mit konischen Schraubverbindungen und ist in 27 Meter langen Zügen von jeweils drei Rohren im Bohrturm abgestellt. Das Abstellen in Zügen erspart beim Wechsel eines Bohrmeißels sehr viel Zeit.
Das Gestänge mit dem unten angeschraubten Meißel verläuft durch den Drehtisch (rotary table). Es wird mittels Kellystange (ein starkwandiges Rohr mit quadratischem Querschnitt) und dazu passendem Einsatz im Drehtisch mit Geschwindigkeiten bis zu 200 Ulmin gedreht. Bohrgestänge und die nach dem Bohren einzubauenden Futterrohre (casings) werden über einen Flaschenzug in das Bohrloch ein- und ausgefahren. Der Flaschenzug hebt Lasten im Gewicht von Hunderten von Tonnen. Sein Zugseil ist auf einer großen Seiltrommel aufgewickelt, die Bestandteil des von Diesel- oder Elektromotoren über große Getriebe bewegten Hebewerks ist. Über dieses Hebewerk werden Bohrmeißel und -gestände in das Bohrloch ein- und ausgefahren. Während des Bohrens wird damit auch der erforderliche Druck des \\Meißels auf das zu zerkleinernde Gebirge geregelt. Oberhalb des Meißels angeordnete Schwerstangen Bohrgestänge mit größerer Wandstärke) sorgen für das erforderliche Gewicht. Der Bohrstrang wird vom Hebewerk auf Zug gehalten. um die Antriebskräfte vom Bohrtisch optimal auf den Bohrmeißel zu übertragen.
Am Bohrhaken ist der Spitzkopf aufgehängt. Er ist mit der drehbar gelagerten und unten mit dem Bohrgestänge verschraubten Kelly verbunden. Wenn beim Fortgang der Bohrung Gestängerohre nachgesetzt werden müssen. wird der Bohrstrang jeweils so weit aus dem Bohrloch angehoben daß die Kelly abgeschraubt und das neue Gestängerohr eingebaut werden kann.
Über den Spülkopf wird die Spülung durch das hohle Bohrgestänge nach unten gepumpt, wo sie am Meißel auf der Bohrlochsohle austritt. Angereichert mit dem zerbohrten Gesteinsmaterial steigt sie dann im Ringraum zwischen Bohrloch und Außenwand des Gestänges wieder nach oben. Dort wird sie über Schüttelsiebe und erforderlichenfalls über Desander und Desilter geleitet, welche das heraufgeförderte Gesteinsmaterial herausfiltern, so daß die Spülung für weitere Umläufe genutzt werden kann. Für den Spülungsumlauf sorgen zwei oder auch mehrere Kolbenpumpen mit Leistungen von 2~Ö bis 3(**) 1/min bei Drücken zwischen 15(;) und 300 bar.
Drehtisch. Spülungspumpen und Hebewerke werden durch Diesel- oder Elektromotoren angetrieben. die zwischen 2(~ und 4000 kW leisten. Bei allen großen und modernen und vor allem auf sämtlichen Offshore-Anlagen erfolgt der Antrieb durch Elektromotoren. Die notwendige elektrische Energie wird durch Dieselmotoren erzeugt.
Jede Bohranlage verfügt über eine Sicherheitseinrichtung die ein Eruptieren des Bohrlochs beim Antreffen hoher Drücke verhindern. Sie heißen Preventer. sind oberhalb des Bohrlochs montiert und bewirken durch widerstandsfähige sehr elastische Gummimanschetten einen sicheren Abschluß des Bohrlochs. Die Preventer können durch Fernsteuerung über hydraulische Einrichtungen oder auch direkt vom Bohrturm aus bedient werden. Wenn aus dem Inneren des Bohrlochs nach oben strömende Gase oder Flüssigkeiten die Fortführung der Bohrung gefährden, umschließen die Gummimanschetten das im Bohrloch befindliche Gestänge, oder sie dichten das leere Bohrloch ab. Üblicherweise sind ständig zwei bis drei mit verschiedenen Manschetten ausgerüstete Preventer verfügbar. Moderne Preventer, wie sie heute üblicherweise bei tiefen Bohrungen vorgeschrieben sind, verfügen über einen Schermechanismus, mit dessen Hilfe das Bohrgestänge in einem Ernstfall abgeklemmt werden kann, so daß das Bohrloch nach unten hin total abgedichtet ist.
Außer diesen Einrichtungen gehören zu einer Bohranlage noch Silos für Zement, Werkstätten, Materiallager und transportable Häuser mit Aufenthalts- und Waschräumen für die Mannschaft, dem Büro des Bohrmeisters und einem Arbeitsraum für den Geologen und die Sampler, die das erbohrte Material sofort an Ort und Stelle im Labor untersuchen.

Erdölförderung

Das endgültige Ergebnis einer Fündigkeit kann erst nach dem Abteufen einer oder sogar mehrerer Bohrungen erwartet werden, dann erst erhält man eine Aussage über Vorhandensein oder Nichtvorhandensein von wirtschaftlich gewinnbaren Öl- und/oder Gasmengen.
Von diesem Zeitpunkt an ist es die Aufgabe des Förderbetriebes, die Bohrung in Produktion zu setzen und die Erdölförderung über einen längeren Zeitraum zu betreiben. Der Förderverlauf in einem Erdölfeld wird von zahlreichen Faktoren und Einflüssen bestimmt, wobei fast für jede Lagerstätte spezielle Bedingungen zu beachten sind und im Verlauf der Produktionsphase eine ganze Reihe von verschiedenen Maßnahmen notwendig werden. Zuerst werden die eingebauten Futterrohre und der sie umgebende Zementmantel im Bereich der Förderhorizonte, aus denen gefördert werden soll, perforiert. Dazu dienen besondere Geräte, die Kugelgeschosse oder Hohlladungen in die Lagerstätte treiben und damit den Zufluß in das Bohrloch ermöglichen.
Um den Sinn der nachfolgend zu erläuternden Installationen besser verstehen zu können, ist es notwendig, daß wir uns kurz mit der Materie befassen, die gefördert werden soll. Jede Erdöl- und Erdgas-Lagerstätte steht unter einem bestimmten Druck, der mit der Tiefe zunimmt, und zwar nach einer Faustformel: je 10m um 1 Atmosphäre (bar). Eine Lagerstätte in 1.000 m Tiefe könnte einen ursprünglichen Lagerstättendruck von 100 bar gehabt haben. Auch die Temperatur nimmt bekanntlich mit der Tiefe zu, und zwar je 100 m Tiefenzunahme um 3 ° Celsius. Die physikalischen Bedingungen - zu denen auch der Druck und die Temperatur gehören - bringen es mit sich, daß bei Vorhandensein von Gas dieses ganz oder teilweise in Öl gelöst ist, so daß das Öl nicht als ,,normale\" Flüssigkeit in der Lagerstätte vorhanden ist. Hier sei auf das Beispiel einer Selterswasserflasche hingewiesen, wo Kohlensäure in der Flüssigkeit gelöst ist. Das in das Bohrloch eintretende Öl verhält sich also ähnlich wie die Flüssigkeit in einer Selterswasserflasche oder Sektflasche, die langsam geöffnet wird, d.h. mit sinkendem Druck entlöst sich mehr und mehr Gas.
In das mit den Futterrohren (Casing) verrohrte Bohrloch werden Rohre mit kleinerem Durchmesser - je nach Mengenerwartung 2 bis 7 Zoll und größer - eingebaut, die als Steigleitung für das Öl-Gas-Gemisch dienen. Da sich das im Öl enthaltene Gas durch die Abnahme des Druckes in der Steigleitung auf dem Wege zur Erdoberfläche entlösen kann, muß man sich während der Förderung einen mehr oder minder intensiven Schaum vorstellen. Es ist daher nach dem Prinzip des Siphons eine selbständig auslaufende Förderung möglich, auch wenn der Lagerstättendruck im Laufe der Förderphase zurückgegangen ist. Die Steigrohre sind mit den Futterrohren durch den Bohrlochskopf und das Eruptionskreuz verbunden. Das Eruptionskreuz ist mit Manometern und Düse versehen und leitet das Öl in ein Sammelsystem bzw. den Sammelbehälter ab.
Eine Düse bewirkt durch ihren verringerten Durchmesser einen Gegendruck am Ende der Steigleitung, der eine zu starke Druckentlastung der Lagerstätte und damit eine unerwünschte Gasentlösung in der Lagerstätte verhindert.
Die in der Lagerstätte gespeicherte Energie (Lagerstättendruck) bestimmt über eine gewisse Produktionsdauer das Förderverfahren. Bei unseren Betrachtungen gehen wir davon aus, daß zunächst genügend Lagerstättenenergie vorhanden ist, um das Öl bis zur Erdoberfläche zu drücken. Das Anfangsstadium der Förderperiode ist die eruptive Phase der Erdölgewinnung. Abhängig von den entnommenen Gas- und Flüssigkeitsmengen nimmt der Lagerstättendruck im Laufe des Förderzeitraumes ab. Wird der Gegendruck auf die Lagerstätte, den der Fließwiderstand in den Leitungen und das Gewicht der Ölsäule erzeugen, größer als der Lagerstättendruck selbst, so hört das Öl auf, selbständig auszufließen. Da das Eruptieren das einfachste Förderverfahren ist, möchte man diese Förderphase möglichst lange beibehalten. Es wurde daher das sogenannte Gasliftverfahren entwickelt. Hierbei wird die in den Steigrohren stehende Ölsäule durch Fremdgas entlastet, das in den Ringraum zwischen Steig- und Futterrohren eingepreßt wird. Das in Blasen hochsteigende Gas verleiht dem Öl einen kräftigen Auftrieb, vermindert das Gewicht der Olsäule und reduziert somit den Gegendruck auf die Lagerstätte. Mit diesem Verfahren wird die selbstfließende Förderphase verlängert. Das Verfahren ist aber nur dort sinnvoll und wirtschaftlich anzuwenden, wo Erdgas bzw. Erdölgas in ausreichender Menge und mit einem genügend hohen Druck zur Verfügung steht.
Falls kein Gas zur Verfügung steht, muß ein mechanisches Förderverfahren, das Pumpverfahren , angewendet werden, das heute zum größten Teil die deutschen Fördergebiete beherrscht und einem Erdölfeld - mit seinen nickenden ,,Pferdeköpfen\" - sein bestimmtes Gepräge verleiht.
Hierbei wird eine Tiefpumpe, die durch das Pumpgestänge mit dem übertage aufgebauten Pumpenantrieb in Verbindung steht, in die Steigrohre eingebaut. Der Tiefpumpenantrieb besteht aus einem Pumpenbock mit Pferdekopf und Schwengel; er wird durch einen Elektro- oder Gasmotor über einen Keilriemen angetrieben. Je nach Größe der Pumpe und in Abhängigkeit von der Hubzahl (5 bis 20 Hub/min) und der Hublänge (max. 3 bis 4m) können mit diesem Verfahren etwa 150 m 3 Flüssigkeit pro Tag gehoben werden. Schreibt die optimale Fördermethode für eine Lagerstätte die Entnahme von größeren Flüssigkeitsmengen vor, so kann man mit viel-
stufigen Kreiselpumpen mehrere hundert Kubikmeter Flüssigkeit pro Tag gewinnen. Bei diesen Anlagen wird dafür der Antriebsmotor zusammen mit der Pumpe in das Bohrloch eingebaut.
Um die Ölausbeute aus einer Lagerstätte weiter zu steigern, müssen häufig Sekundärverfahren angewendet werden. Hierbei preßt man gefördertes und abgeschiedenes Wasser oder Fremdwasser in die Lagerstätte ein, um auf diese Weise das Öl den fördernden Sonden zuzutreiben. Die Notwendigkeit, die einheimischen Ölreserven maximal auszubeuten, läßt heute die Anwendung teurerer Verfahren zu, bei denen mit Hilfe von eingepreßtem Dampf oder durch Verwendung von Chemikalien die Fließeigenschaften von Öl in der Lagerstätte verbessert und dadurch eine höhere Endausbeute erreicht werden kann. Trotzdem werden im Durchschnitt nur 20-40 0 /o des in den Gesteinsporen vorhandenen Erdöls zutage gefördert.


Erdölaufbereitung

Das Erdöl ist in der Form, wie es in den Produktionsbetrieben gewonnen wird, für eine Weiterverarbeitung in den Raffinerien noch nicht geeignet. Als ,,Rohprodukt\" fällt es in den Ölfeldern als ein Gemisch von Gas, Öl und Salzwasser an. Dieser Umstand erfordert einen Behandlungsgang (Aufbereitung), bei dem eine Trennung der Gemischkomponenten und eine Beseitigung von Verunreinigungen vorgenommen wird.
Dies geschieht in dafür besonders errichteten Trennanlagen eines Erdölbetriebes. Eine spezielle Erdöl-Aufbereitungsanlage ist in dem nebenstehenden Schema dargestellt.
Durch Rohrleitungen wird das aus den einzelnen Bohrungen kommende Gas-Öl- bzw. Gas-Ol-Wasser-Gemisch einer zentralen Sammelstelle zugeleitet. Dort tritt es in den Gasabscheider ein, der im allgemeinen unter niedrigem Druck steht. Durch starke Wirbelung und Aufschlag auf eingebaute Prallbleche wird eine möglichst große Oberfläche für das Öl geschaffen. Das im Öl enthaltene Gas entlöst sich, gibt nach oben mitgerissene Öl- und Wassertröpfchen ab, und das spezifisch schwerere Öl-Wasser-Gemisch sammelt sich am Boden des Gasabscheiders , von dem es kontinuierlich abgeleitet wird.
Das abgeschiedene Gas wird aus dem Kopf des Abscheiders abgezogen und in der Regel einem Verbraucher-System zugeführt. Vereinzelt entzieht man in einem Zwischenschritt im abgeschiedenen Erdölgas enthaltene wertvolle Kondensate in sogenannten GasolinAnlagen.
Das Öl-Salzwasser-Gemisch aus dem Boden des Gasabscheiders gelangt zunächst in einen Naßöltank. Das mit dem Öl gewonnene Wasser ist entweder als freies Wasser vorhanden oder aber in Form von Emulsionen mit dem Öl eng vermischt. Das freie Wasser scheidet sich aufgrund des unterschiedlichen spezifischen Gewichtes zum größten Teil in diesem Naßöltank ab, wird von dessen Boden abgezogen und nach Zwischenlagerungen einem Salzwassertank einem besonderen und geschlossenen Reinigungs- und Ableitungssystem zugeführt. Das in Form einer Emulsion vorhandene Wasser würde bei der Weiterverarbeitung in den Raffinerien Störungen verursachen und darüber hinaus unnötige, hohe Transportkosten verursachen. Daher muß eine derartige Emulsion (Öl-Wasser-Gemisch) in einem komplizierten chemisch-physikalischen Arbeitsgang aufbereitet werden.
Es gibt mehrere Verfahren, um den Wasser- und Salzgehalt in den geforderten Grenzen zu halten. Im Bild ist schematisch das Verfahren der elektrischen Aufbereitung gezeigt. Da zwischen Öl und Salzwasser nur ein geringer Unterschied im spezifischen Gewicht besteht, würde bei einem hochviskosen (zähen) Gemisch die Trennung der beiden Flüssigkeiten stark erschwert. Deshalb wird die Emulsion zunächst in einem Erhitzer mit Hilfe von Dampf auf 80 bis 1000 Celsius aufgeheizt. Bevor das 01 in die Entwässerungs- und Entsalzungsanlage gelangt, wird dem Flüssigkeitsstrom außerdem ein Spalter zugesetzt, der die Oberflächenspannungen zwischen Öl und Wasser in der Emulsion herabsetzen soll, wodurch sich Öl und Wasser leichter trennen lassen. Zusätzlich wird eine bestimmte Menge Süßwasser zugesetzt, das das vorhandene Salzwasser verdünnen und eventuell ungelöstes, im Öl enthaltenes Salz auflösen soll.
In der eigentlichen Entwässerungs- und Entsalzungsanlage fließt das so vor-behandelte Rohölgemisch durch ein bestehendes Wechselspannungsfeld, wobei die kleineren Wassertröpfchen in starke Bewegung gebracht werden und so häufig aneinanderstoßen, daß sie sich bei diesem Vorgang zu größeren Tropfen vereinigen und dann aufgrund des Gewichtsunterschiedes zwischen Wasser und Öl auf den Boden des Behälters sinken und hier als Salzwasser abgezogen werden können. Der Vorgang ist kontinuierlich, wobei die Verweilzeit des Öls im elektrischen Feld so eingestellt wird, daß die geforderten Grenzen in bezug auf Wasser- und Salzgehalt erreicht werden.
Das Rohöl gelangt nunmehr in den Reinöltank, wo es bis zum Abtransport zur Raffinerie bleibt.
Für den Transport zur Raffinerie gibt es verschiedene Möglichkeiten. Die einfachste Methode ist, das Öl durch lange Rohrleitungen, sogenannte Pipelines, unmittelbar von der Sammelstelle im Ölfeld zur Raffinerie zu leiten. Da jedoch die Kosten für eine derartige Leitung sehr hoch sind, lohnt sich ihr Bau nur bei großen Olmengen, einer langen Lebensdauer des Ölfeldes und einer günstigen Entfernung zwischen Ölfeld und Raffinerie. Am weitesten verbreitet ist in Deutschland die Verladung in Kesselwagen, die - in Zügen zusammengestellt - nach einem festen Fahrplan zwischen Feld und Raffinerie pendeln. Wo es möglich ist, wird auch bei uns das Öl auf Tanker verladen, da sie größere Mengen billiger transportieren können.


Förderung von Erdgas

Neben dem Erdöl hat das Erdgas in den letzten Jahren auch in der Bundesrepublik immer mehr an Bedeutung gewonnen. Die bedeutendsten Gas-Lagerstätten sind im norddeutschen Becken konzentriert, da hier die geologischen Verhältnisse für die Bildung von Erdgas-Lagerstätten besonders günstig waren. Die hier erschlossenen Erdgasvorkommen liegen in Teufen zwischen 2.000 und 5.000 m, so daß die in diesen Vorkommen enthaltenen Gasmengen unter Drücken stehen, die mehrere hundert Atmosphären (bar) betragen. Diese Energie reicht über längere Zeiträume aus, das Gas an die Oberfläche zu fördern, wo es nach Reinigung und Trocknung sicher und kontrolliert den verschiedenen Versorgungssystemen zugeführt wird. Diese hohen Drücke bestimmen sehr wesentlich die Auswahl der kostspieligen Förderausrüstung.
Reicht der Druck in der Lagerstätte nicht mehr aus, um das Gas bis zum Verbraucher zu befördern, werden an geeigneten Stellen Kompressoren in die Leitungen eingeschaltet, die den Druck erhöhen.

Das ,,Frac\"-Verfahren

Allerdings haben nicht alle Erdgas-Lagerstätten - insbesondere in größeren Tiefen - einen ausreichend durchlässigen Porenraum für eine gute Förderrate. Vor dieser Situation steht die Förderindustrie immer häufiger, seit sie in den vergangenen Jahren in die tieferen Stockwerke der Erdrinde vorgedrungen ist. Im sogenannten ,,Rotliegenden\" sowie im Karbon\" gibt es Erdgasvorkommen, die in sehr feinporigen Sandsteinschichten angetroffen wurden. Eine wirtschaftliche Förderung kann erst mit einer ,,Frac-Behandlung\" sichergestellt werden.
Wenn eine Bohrung auf eine derartige Lagerstätte gestoßen ist, geht der eigentlichen ,,Frac-Behandlung\" eine eingehende Prüfung der Lagerstätte mittels Bohrlochmessungen und -teste sowie der gewonnenen Kerne voraus. Insbesondere das Kemmaterial wird mit verschiedenen physikalischen und chemischen Methoden untersucht. Aufgrund dieser Untersuchungen wird die Lagerstätte bewertet und unter Zuhilfenahme von Computern ein Programm für die ,,Frac-Behandlung\" erstellt. Über Wirtschaftlichkeitsberechnungen wird versucht, die optimale Länge des Fracs zu ermitteln.
Als Frac-Flüssigkeit kommen Wasseroder Öl-Emulsionen in Frage, die mit Hilfe von Polymerzusätzen die erforderliche Tragfähigkeit für das Stützmittel erhalten. Die Frac-Flüssigkeit wird unter hohem Druck von bis zu 1.000 bar in das Bohrloch gepumpt, wobei das Stützmittel - ein druckfestes, feinkörniges keramisches Material (z. B. Bauxit) - hinzugegeben wird. Unter dem hohen Druck entsteht ein Riß im Gestein, der sich bis mehrere hundert Meter vom Bohrloch ausbreitet. Dieser Riß wird durch das Stützmittel offengehalten, während die FracFlüssigkeit zum Teil wieder zutage gefördert wird. In der mit Stützmittel gefüllten Spalte sammelt sich das aus einer nun sehr viel größeren Fläche ausströmende Gas an und ist mit erheblich größeren Förderraten gewinnbar, weil das Stütz-mittel eine hohe Durchlässigkeit besitzt.
Den bisher größten Frac in Europa hat Mobil Ende 1982 im neu entdeckten Erdgasfeld Söhlingen angewandt. Dabei wurden Pumpen mit einer Gesamtantriebsleistung von 16.500 kW benötigt, um 2.600 m 3 Frac-Flüssigkeit und etwa 550 t Stützmittel mit rd. 650 bar in die rund 4.800 m tiefe Lagerstätte zu pumpen. Der erzeugte Riß hatte eine Gesamtlänge von 800 m, eine Höhe von rd. 115 m und eine Breite von etwa 2-3cm. Die Förderrate verfünffachte sich. Die Kosten betrugen rd. 6 Millionen DM


Aufbereitung von Erdgas

Jedes Erdgas stellt ein Gemisch von mehreren gasförmigen Komponenten dar 1 deren Anteile je nach Lagerstätte unterschiedlich hoch sein können. Wird von Erdgas als Energieträger gesprochen, so sind dessen Hauptkomponenten Kohlenwasserstoffe, von denen in der Regel das Methan (CH 4 ) den größten Anteil einnimmt. In geringerem Maße sind auch ,,höhere\" Kohlenwasserstoffe wie z. B. Athan und Propan Bestandteile des Erdgases. Darüber hinaus sind fast immer nicht brennbare Bestandteile (Inertgas) wie Kohlendioxid (CO~ und Stickstoff (N 2 ) sowie Spuren von Edelgasen vorhanden.
Wie die atmosphärische Luft ist auch Erdgas in der Lage, Feuchtigkeit bis zur Sättigung aufzunehmen. Die Menge des im Gas enthaltenen Wasserdampfes wird durch Druck und Temperatur bestimmt.
Da die Erdgas-Lagerstätten generell außer dem Gas auch Wasser enthalten, ist das geförderte Gas mit Wasserdampf gesättigt, der bei Druckentspannung über Tage und Abkühlung als freies Wasser aus dem Gas auskondensiert.
Dieses Wasser würde in den Fördereinrichtungen und Leitungen hohe Druckabfälle, bei niedrigen Temperaturen Einfrierungen und ggf. auch Korrosion verursachen. Zur Verhütung dieser unerwünschten Erscheinungen sind vor dem Eintritt des Gases in die Pipeline Einrichtungen erforderlich, mit denen das mitgeförderte und kondensierende Wasser abgeschieden wird.
In diesen sogenannten Gas-Trocknungsanlagen wird darüber hinaus durch Einsatz stark hygroskopischer Chemikalien dem Gas so viel Feuchtigkeit entzogen, daß selbst bei Temperaturen unter dem Gefrierpunkt kein Wasser auskondensieren kann. Dies ist auch bei untertägig verlegten Gasleitungen erforderlich, da in strengen Wintern der Bodenfrost die Leitung erreicht und Einfrierungen in der Leitung verursachen könnte. Hinsichtlich Wirkungsweise, Aufbau und Chemikalieneinsatz gibt es verschiedene Methoden für die Gas-Trocknung. Als häufigstes Trockenmittel wird ,,Glykol\" verwendet, eine organische Flüssigkeit, die begierig Wasser aufnimmt und unbegrenzt mit Wasser mischbar ist. Die Zeichnung zeigt schematisch einen häufig eingesetzten Gas-Trocknungs-Anlagentyp auf Glykol-basis. Vom Bohrloch aus gelangt das nasse, unter hohem Druck stehende Erdgas in den Vorabscheider, wo das freie Wasser und mitgeförderte Verunreinigungen wie Bohrspülung, Sand und Ton abgeschieden und dem Wassertank zugeleitet werden. Bei Beginn der Förderung wird das Gas in einem Durchlauferhitzer vorgewärmt und dann über ein Reduzierventil auf Anlagendruck entspannt. Sobald genügend Wärme aus dem Bohrloch mitgefördert wird, muß das Gas nach der Entspannung in dem Kühler soweit abgekühlt werden, daß es die für den folgenden Prozeß geeignete Temperatur hat. Das bei der Entspannung anfallende Wasser wird in einem Abscheider aus dem Gasstrom entfernt.
Von hier tritt das Gas in den unteren Teil des Absorbers ein, der mit mehreren übereinander angeordneten Glocken-böden ausgerüstet ist. Beim Durchperlen durch die Glockenböden kommt das Gas in engen Kontakt mit dem im Gegenstrom von oben nach unten fließenden Glykol. Hierbei wird dem Gas der größte Teil der noch verbliebenen Restfeuchtigkeit durch das Glykol entzogen. Das getrocknete Gas verläßt am oberen Ende den Absorber und tritt nach der Mengenmessung in die Verbindungsleitung zur Erdgasfernleitung ein.
In den für die Gas-Trocknung notwendigen Glykolkreislauf ist die Regeneration eingeschaltet. Hier wird das Naßglykol, das vom Absorber kommt, auf eine Temperatur von etwa 2000 C erhitzt. In der aufgesetzten Destille werden die Glykoldämpfe kondensiert, während der Wasserdampf dem Stapeltank zugeführt wird, wo er zu Wasser kondensiert. Das getrocknete Glykol verläßt die Regeneration über einen Überlauf und fällt in den Reinglykol-Vorratstank, um von hier aus wieder in den Absorber gepumpt zu werden.
Wenn das Gas mit sehr hohem Druck aus den Lagerstätten fließt, kann es auch durch das Senken des Druckes (Entspannung) getrocknet werden. Dabei wird der physikalische Effekt ausgenutzt, daß sich Erdgas bei der Entspannung abkühlt. Diese Abkühlung kann bis unter den Gefrierpunkt gehen. Hierbei werden nach dem Abkühlen das ausgeschiedene Wasser und andere Begleitstoffe, wie z. B. höhere Kohlenwasserstoffe, von dem Gas getrennt.
Dieses Verfahren wird, wenn die Abkühlung durch Entspannung nicht mehr ausreicht, durch einen Kühlprozeß, wie er auch in einem Haushaltskühlschrank angewendet wird, ergänzt.
Neben den anfangs erwähnten Teilkomponenten - wie N 2 , C0 2 und Edelgase haben Erdgase der tieferen geologischen Stockwerke (Zechstein) auch Bestandteile, die sorgfältig ausgewählte Förderausrüstungen, besondere Fördermethoden und ein anschließendes Reinigungsverfahren (Aufbereitung) erfordern. Der in diesem Gas enthaltene Schwefelwasserstoffanteil (H 2 5) - ein übelriechendes, giftiges und stark korrosives Gas - verlangt bei der Förderungbesondere Sicherheitsvorkehrungen und setzt den Einsatz von hochqualifiziertem Material voraus .Der Anteil dieser Gasart - der Fachmann spricht hier von Sauergas - an den Gesamtreserven in der Bundesrepublik ist relativ hoch, wäre aber ohne besondere Aufbereitungsverfahren für den Energiemarkt wertlos.
Der Entzug des Schwefelwasserstoffes aus dem Erdgas erfolgt in besonders dafür konstruierten Aufbereitungsanlagen, die von den Erdgasproduzenten sehr hohe Investitionen verlangen und deren Verfahrenstechnik besondere Fachkenntnisse erforderlich macht.

 
 

Datenschutz
Top Themen / Analyse
Arrow Die römische Geschichte
Arrow Die Ratte
Arrow Aufbau und Organisation GreenPeace
Arrow Ein Überblick der Ausbreitungsklassen
Arrow Ecstasy - Der Begriff
Arrow Neue Anforderungen an die Stimme im 18. und 19. Jahrhundert
Arrow Die ersten Stunden danach
Arrow Haltung von Zuchtrindern und/oder Nutzrindern in landwirtschaftlichen Betrieben
Arrow DIE BOHRANLAGE
Arrow Behandlungsmöglichkeiten / Therapie bei Magersucht&Bulimie


Datenschutz
Zum selben thema
icon Verdauung
icon Drogen
icon Pubertät
icon Enzyme
icon Erbkrankheiten
icon Rauchen
icon Luft
icon Immunsystem
icon Parasit
icon Verdauung
icon Gedächtnis
icon Ökosystem
icon Genetik
icon Biotop
icon Radioaktivität
icon Hygiene
icon Gehirn
icon Tier
icon Botanik
icon Pflanzen
icon Gen
icon Chromosomen
icon Lurche
icon Depression
icon Dinosaur
icon Infektion
icon Auge
icon Allergie
icon Alkohol
icon Insekte
icon Herz
icon Proteine
icon Wasser
icon Ozon
icon DNA
icon Ökologie
icon Spinnen
icon Blut
icon Klonen
icon Hepatitis
icon Fotosynthese
icon Krebs
icon Hormone
icon Schmerz
icon Fortpflanzung
icon Röteln
icon Mutationen
icon Diabetes
icon Antibiotika
icon Eiweißsynthese
icon Körper
A-Z biologie artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution