Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Laser

Laser

Der laser als waffe-


1. Atom
2. Motor



Ein großes Laser-Anwendungsgebiet ist die Waffentechnik. Wenn man den Begriff \"Laserkanone\" hört, so denkt man meistens an Science-Fiction-Filme, wie z.B. StarTrek - Raumschiff Enterprise/Voyager oder an die StarWars-Trilogy.
Doch auch in der Gegenwart werden Laserwaffen bereits eingesetzt:
Laser-Zieleinrichtungen und Entfernungsmeßgeräte, Laser-Ortungsgeräte und Nachrichtenübermittlungsgeräte gibt es heutzutage schon (z.B. in Kampfpanzern, FlaRakPanzern, usw.). Ein Waffenbeispiel für Lasertechnik gibt es aus den USA: Dort wurde ein Landepanzer für die Marine entwickelt, der mit einem 400.000 Watt Laser ausgerüstet war. Der Panzer war mit einer Panzerabwehrrakete vom Typ TOW bestückt, die nun mit Hilfe des Lasers \"punktgenau\" ins Ziel gesteuert werden konnte.
Auch in Kampfflugzeugen wird die Lasertechnik eingesetzt, wie man es z.B. im Krieg der USA gegen den Irak sehen konnte. Die Rakete steuerte auf einem \"Laserleitstrahl\" genau ins gegnerische Ziel.
In New Mexico (USA) gibt es seit 1982 ein Testgelände für eine Laserkanone mit 2,2 Millionen Watt Leistung.
Ein bekanntes Beispiel für den Einsatz des Lasers als Waffe ist das 1983 vom US-Präsidenten Ronald Reagan gestartete Programm zur Errichtung eines \"Schutzschildes im Weltraum\". Bekannt wurde dieses Projekt als \"Strategic Defense Initiative\" (SDI).

Für den Einsatz als Abwehrwaffe gab es 1987 vier Laserarten, die dafür geeignet schienen. Diese Laser waren in der Lage, während der Antriebsphase einer Rakete (vom Abschuß der Rakete bis zum Lösen der Flugkörper von der Antriebsrakete) diese durch einen Laserschuß zu zerstören.

Einer dieser vier Laser war der \"chemische Laser\". Er erreicht seine Strahlung durch die Reaktion zweier Gase (z.B. Wasserstoff & Fluor). Er ist ein Dauerstrichlaser mit einer Leistung von mehr als einem Megawatt (103 Kilowatt). Um diesen Laser als Abwehrwaffe gegen Raketen einsetzen zu können, wäre allerdings mindestens die 20-fache Leistung erforderlich.
Der zweite Laser war der sogenannte \"Excimer-Laser\", der Licht erzeugt, das in rasch aufeinanderfolgenden Impulsen ausgesendet wurde. Einer der stärksten Laser dieser Art war der Krypton-Flourid-Laser. Doch auch er war als Abwehrwaffe untauglich, da er statt einer mehrere Millisekunden dauernden Aussendung von mindestens 100 Megajoule nur etwa 1 Mikrosekunde lang 10 Kilojoule erzeugen konnte.
Als nächstes überlegte man, ob der \"Freie-Elektronen-Laser\" als Raketenabwehr geeignet wäre.
Der \"Freie-Elektronen-Laser\" funktionierte nach folgendem Prinzip:
Ein Elektronenstrahl wird durch ein magnetisches Wechselfeld (die Pole werden andauernd \"vertauscht\") gelenkt. Durch die ständigen Magnetfeldänderungen werden die bewegten Elektronen in Schwingungen versetzt. Dadurch wird elektromagnetische Strahlung ausgesendet. Die Strahlung konnte man beim \"Freie-Elektronen-Laser\" durch Variation der Magnetfeldänderung auf jede beliebige Wellenlänge einstellen.
Auch dieser Laser war als Abwehrwaffe nicht zu gebrauchen, da er bei einer vorausgesetzten Wellenlänge von einem Mikrometer eine Mindestleistung von ca. 1 Gigawatt (1 Million Kilowatt) hätte bringen müssen. Die Wellenlänge von einem Mikrometer war unbedingt notwendig, da es in diesem Bereich keine atmosphärische Absorption gegeben hätte. Das wiederum war wichtig, da die Laserkanone ja durch die Atmosphäre geschossen hätte.
Bei einer Wellenlänge von einem Mikrometer lag die Spitzenleistung jedoch bei nur 1000 Kilowatt. Also war somit auch der \"Freie-Elektronen-Laser\" ungeeignet.

Der vierte Laser, den man verwenden wollte, war der \"Röntgen-Laser\".
Ein nuklearer Sprengsatz wird zur Explosion gebracht, die das Freiwerden von Röntgenstrahlen verursacht. Röntgenstrahlung ist viel energiereicher als elektromagnetische Strahlung und wäre somit zur Abwehr von Raketen sehr geeignet gewesen.
Bei der Entwicklung des Röntgenlasers trafen die Wissenschaftler jedoch auf viele Probleme, so daß an dieser Technologie heutzutage immer noch geforscht wird.
Bis heute gibt es (wahrscheinlich) noch kein ausgereiftes Raketenabwehrsystem auf Laserbasis.
Ein Problem ist, einen genügend starken Laser zu entwickeln, der die benötigte Energie leisten kann.
Viel entscheidender ist jedoch das Problem, den Laserstrahl in sein Ziel (in die feindliche Rakete) zu lenken. Zu diesem Zweck benötigt man Spiegel mit einem Durchmesser von 10 bis 40 Metern. Bis heute liegt die Durchmessergrenze jedoch bei ca. 8 Metern.
Problematisch ist dabei nämlich, daß so ein großer 40-Meter-Spiegel schnell und vor allem präzise steuerbar sein muß, um auf beweglich Ziele ausgerichtet werden zu können.

 
 



Datenschutz
Top Themen / Analyse
indicator Die Entdeckung der Radioaktivität
indicator Uranusmonde
indicator Berechnung der Kapazität:
indicator Energie vom Acker
indicator Sportreportage und Sportfotografie
indicator Die Viking Sonden
indicator Wo ist eigentlich Mochovce genau?
indicator DAS MASSENSPEKTROMETER
indicator Wirkungsgrad
indicator Laser Technology




Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution