Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


physik artikel (Interpretation und charakterisierung)

Atom

Das rutherfordsche - bohrsche atommodell


1. Atom
2. Motor



Im Jahre 1909 besuchte ERNEST MARSDEN, ein junger neuseeländischer Student, seinen berühmt gewordenen Kollegen RUTHERFORD. MARSDEN war aufgefallen, daß die Alphateilchen (das sind Teilchen, die beim radioaktiven Zerfall auftreten), anstelle geradeaus weiterzufliegen, manchmal, wenn man sie durch Materie schießt, abgelenkt werden und ihre Winkel stark ändern. Rutherford, der diese Beobachtung seines jungen Kollegen nicht ganz glauben konnte, ließ den Versuch, um ganz sicher zu gehen, wiederholen, doch er kam zum gleichen Ergebnis.

Warum wurden diese Teilchen abgelenkt? Zu dieser Zeit gab es mehrere Atommodelle, wie zum Beispiel das Thomsonsche Modell, das auch Rosinenkuchen-Modell genannt wird. Demnach sei das Atom eine Kugel, in der sich positive elektrische Ladungen diffus aufhalten, wobei dann die Elektronen wie Rosinen in einen Kuchen eingelagert sind. Dieses Atommodell konnte aber nicht richtig sein, denn nach diesem Modell konnten die Alpha-Teilchen nicht abgelenkt werden und ihre Bahn stark verändern.

Andere Naturwissenschaftler glaubten wiederum, daß ein Atom wie unser Planetensystem aufgebaut ist, doch diese Vermutungen waren rein spekulativ.

Abb. 5: Der Streuversuch von RUTHERFORD an der Goldfolie . Die positiv geladenen - Teilchen werden vom positiv geladenen Atomkern abgelenkt.

RUTHERFORD, der es sich zum Ziel gesetzt hatte, die unbekannte Struktur der Atome zu erforschen, beschoß eine äußerst dünne Goldfolie mit Alpha-Teilchen. Da die Alpha-Teilchen viel schwerer sind als die Elektronen, vermutete Rutherford, daß die Elektronen nur leicht abgelenkt werden. Sein Versuch bewies aber das Gegenteil. Erst zwei Jahre später, im Jahre 1911, fand Rutherford eine Erklärung für dieses Phänomen. Er konnte sich die starke Ablenkung nur damit erklären, daß die positiven Ladungen nicht gleichmäßig im Kern verteilt sind, sondern in einem Atomkern konzentriert sind. Je näher die Teilchen nun dem Kern kommen, desto stärker werden sie abgelenkt. Die Entdeckung des Kerns änderte die Ansichten vom Aufbau der Atome.

Das Rutherfordsche Atommodell beruht darauf, daß die Elektronen viele hundert billionenmal pro Sekunde um den Kern kreisen, und durch den Ablenkungsradius der Alpha-Teilchen-Bahnen konnte man die Größe des Atoms bestimmen. Doch so einfach sollte die Lösung nicht sein:
Die Elektronen würden im Falle einer Kreisbahn um den Kern auf ihrer Bahn Lichtwellen aussenden, dadurch wäre der Energieverlust wiederum so groß, daß sie in einer Milliardstel Sekunde in den Kern stürzten.

Das Rutherfordsche Modell war also nicht ganz korrekt, doch Nils Bohr fand eine Lösung.
NIELS BOHR erblickte das Licht der Welt am 7. 10. 1885 in Kopenhagen. Niels Vater war ein bekannter Physiologe, Niels Mutter stammte aus einer reichen jüdischen Bankier-Familie. Sie legten großen Wert auf eine akademische und kulturelle Erziehung. Niels und sein Bruder Harald, die einerseits beide sehr erfolgreiche Sportler, andererseits aber auch \"Genies\" in der Schule waren, wuchsen in der oberen Mittelschicht Dänemarks auf. Es war Niels Vater, der das Interesse an Physik bei seinem jüngeren Sprößling weckte, und so ist es nicht verwunderlich, daß Niels an der Universität in Kopenhagen Physik studierte. Er setzte sich vor allem mit Flüssigkeitsstrahlen und der Oberflächenspannung auseinander. In seiner Doktorarbeit behandelte er die Elektronentheorie der Metalle und ging kurz darauf in das Cavendish-Laboratorium, um dort bei J. J. THOMSON zu arbeiten.

Während seines Aufenthalts machte BOHR Bekanntschaft mit RUTHERFORD, der ihn dann 1911 nach Manchester einlud, um an einem Kurs, der sich mit radioaktiven Messungen beschäftigte, teilzunehmen. BOHR beschäftigte sich in RUTHERFORDS Labor zuerst mit dem Durchgang der Alpha-Teilchen durch Materie, und diesem Thema, das ihn so sehr interessierte blieb er bis an sein Lebensende treu.

Im Jahre 1913, im Alter von 27 Jahren, veröffentlichte BOHR sein quantentheoretisches Atommodell, das Auskunft über das Verhalten der Elektronen in der Atomhülle gab. Um sein Gesetz zu formulieren, griff er auf die Theorien der gequantelten Energie von Planck und Einstein zurück:
Abb. 6: Auf der \"Energietreppe\" des Wasserstoffatoms werden die Quantensprünge, die das Elektron ausführen kann, deutlich gemacht. Pfeile nach unten () bedeuten ein Ausstrahlen, Pfeile nach oben () ein Absorbieren (Verschlucken) eines Lichtquants.

1. Die Elektronen kreisen so um den Atomkern, daß ihre Fliehkraft gleich groß ist wie die elektrostatische Anziehungskraft. Im Gegensatz zum Rutherfordschen Atommodell, bei dem sich die Elektronen auf beliebigen, kreisförmigen Bahnen bewegen, können sich die Elektronen beim Modell Bohrs nur auf ganz bestimmten Bahnen aufhalten, die er Quantenbahnen nennt.

2. Die Elektronen bewegen sich auf ihren Bahnen, ohne daß sie Energie verlieren.

3. Es ist möglich, daß die Elektronen von einer Quantenbahn auf eine andere springen, wobei sich dann die \"Energiestufe\" des Atoms verändert. Springt ein Elektron auf eine Bahn, die weiter außen liegt, muß Energie aufgenommen werden. Das kann nur geschehen, wenn das Atom ein Lichtquant absorbiert. Springt das Elektron hingegen auf eine Bahn, die weiter innen, also dem Kern näher liegt, wird Energie in Form eines Lichtquants freigesetzt.

Wenn also das Atom Energie abgibt, bzw. absorbiert, dann geschieht das immer in Portionen von der Größe von E=h*f.

Somit hatte BOHR bei seinem Atommodell das Plancksche Wirkungsquantum eingebaut.

Betrachten wir nun BOHRS Theorie an einem einfachen Beispiel, dam Wasserstoffatom. Das H-Atom besitzt ein Proton im Kern, das von einem negativ geladenen Elektron umkreist wird. Diesem Elektron stehen nun durch die Quantenbedingungen zahlreiche Bahnen zur Verfügung, in denen es den Kern umkreisen kann. Die innerste Bahn, also das unterste Energieniveau des Atoms bezeichnet der Physiker als Grundzustand. Führt man nun von außen Energie zu, so kann das Elektron auf eine Bahn, die weiter außen liegt, springen. Dies nennt der Physiker Quantensprung des Elektrons. Auf dieser äußeren Bahn bleibt das Elektron nur für sehr kurze Zeit, genau gesagt für 1/108 Sekunden, dann springt es wieder auf eine innere Bahn, oder in den Grundzustand zurück. Die Energiepakete, die bei diesem Vorgang frei werden, werden als sichtbare oder unsichtbare Lichtquanten ausgestrahlt. So hatte BOHR
das RUTHERFORD-Modell erneuert, da dies Versuchsergebnisse notwendig gemacht hatten, und so erneuerten andere Physiker wiederum BOHRS Modell, weil ihre Experimente ganz neue Resultate mitsich brachten.

 
 



Datenschutz
Top Themen / Analyse
indicator Barock-
indicator Dielektrische Polarisation:
indicator Der Wert der Energie
indicator The development of the atomic bomb
indicator Entdeckung der Radioaktivität
indicator Der elektrische Leitungsvorgang
indicator Atommüll auf Reisen
indicator Hologrammaufnahme
indicator Strahlenschäden-
indicator Der Ursprung - Laser




Datenschutz
Zum selben thema
icon Transistor
icon Energie
icon Schall
icon Einstein
icon Kernfusion
icon Bomben
icon Strahlung
icon Magnet
icon Kohäsion
icon Welle
icon Diamant
icon Newton
icon Blitz
icon Adhäsion
icon Biomasse
icon Gleitreibung
icon Dichte
icon Watt
icon Entwicklung
icon Otto
icon Laser
icon Reaktor
icon Widerstand
icon Kraft
icon Mikroskope
icon Dynamik
icon Turbine
icon Herstellung
icon Elektrizität
icon Gesetz
icon Strahlung
icon Theorie
icon Kapazität
icon Haftreibung
icon Transformator
icon Wirkung
icon Mechanik
A-Z physik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution