Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
   
  •  
    Biologie
    Themen der Chemie
    Deutsch online artikel
    Englisch / Englische
    Franzosisch
    Geographie
    Geschichte
    Informatik
    Kunst
    Mathematik / Studium
    Musik
    Philosophie
    Physik
    Recht
    Sport
    Wirtschaft & Technik



    Biographie

    Impressum

Geometrie (mathematik)

Geometrie




Andere kategorien für Mathematik Artikeln


Nehmen Sie einen link zu ihrem namen

Ich bin schwarz und ich bin stolz

Ihre persönlichen Nachrichten. Klicken Sie in Artikel einreichen auf „Artikel hinzufügen“ und wählen Sie dann das kategorien fur artikel.

mehr details


Geometrie
  • Grundlagen der mathematik

    Grundlagen der Mathematik Spezialgebiet in Mathematik Inhaltsangabe 1. Die axiomatische Methode Seite 2 1.1. Was ist die Axiomatisierung? 1.2. Isomorphie 1.3. Überprüfung von Axiomensystemen 2. Die Entwicklung von nichteuklidischen Geometrien Seite 4 2.1. Das Parallelenaxiom 2.2. Die nichteuklidischen Geometrien 3. Historische Entwicklung der Philo ...

    mehr
  • Historische entwicklung der philosophie der mathematik

    Zu Beginn unseres Jahrhunderts gab es eine kurze Periode, in der die Grundlagen der Mathematik offen diskutiert wurden. Rund 40 Jahre lang tauschen die führenden Mathematiker ihre Gedanken untereinander aus, und stritten sich über Details. Diskussionen darüber gab es dennoch schon lange vorher. Sie hängen meist mit dem sogenannten Euklid-Mytho ...

    mehr
  • Das parallelenaxiom

    Wie bereits erwähnt hatten die "Elemente" des Euklid für die Geometrie und die Mathematik überhaupt für lange Zeit einen ähnlichen Stellenwert, wie die Bibel für das Christentum. Euklid stellte die Geometrie auf eine Basis von Axiomen, die über 2000 Jahre lang Gültigkeit besaßen. Selbst Kant war der Meinung, daß sie die Wahrheit über die Realität ...

    mehr
  • Der euklid-mythos

    In den philosophischen Kontroversen blieb die Geometrie unangetastet. Es hält sich immer noch (sogar noch bis ins 19. Jhdt. - durch z.B.: Carl Friedrich Gauss ) die Definition der Mathematik die Plato und Aristoteles geprägt haben (vgl. das alte Griechenland). Alle Standpunkte gingen davon aus, dass das geometrische Wissen - speziell die Errungen ...

    mehr
  • Überprüfung von axiomensystemen

    Welche Kriterien muß ein System nun aber erfüllen, damit es anerkannt werden kann? Der wichtigste Anspruch an ein System ist die Forderung nach der Widerspruchsfreiheit. Wenn ein Mathematiker eine neues System Σ ausarbeitet, muß er sicherstellen, daß es dieses geben kann. Aus seinem System Σ darf er niemals die Aussagen α und ά ...

    mehr
  • Was ist die axiomatisierung?

    Ein Axiomensystem ist die Grundlage aller mathematischer Systeme. Um ein solches System zu schaffen muß man alle Grundtatsachen und Definitionen finden, aus denen sich alle anderen Sätze des betreffenden Fachgebiets bzw. der betreffenden Wissenschaft sammeln. Ist dies gelungen, so nennt man das Axiomensystem definit. Damit ein solches System über ...

    mehr
  • Die länge der küste großbritanniens

    Benoit Mandelbrot ist für die Fraktale Geometrie, was Einstein für die Relativitätstheorie war und Freud für die Psychoanalyse. Ihm war aufgefallen, daß die Preisschwankungen von Baumwolle auch über längere Zeiträume ein ähnliches Muster aufwiesen. Für einen Computerhersteller untersuchte er danach unerklärliche Störungen bei der Datenübertra ...

    mehr
  • Fraktale geometrie-

    Fraktale (lat. Fractum: gebrochen) verdanken ihren Namen der Tatsache, daß ihre Dimensionen nicht ganzzahlig, sondern gebrochen sind. Zum Vergleich: Unser Gehirn hat beispielsweise die fraktale Dimension 2,79 und Wolken 2,35 - wobei die Dimension zwei einer idealen, glatten Ebene entspricht oder die Dimension drei dem geometrisch idealen Raum ein ...

    mehr
  • Flächeninhalt: drei- & vierecke

    3. Klasse Der gesetzliche Lehrplan beinhaltet für die 3. Klasse: 3.1 Arbeiten mit Zahlen und Maßen . rationale Zahlen in verschiedenen Formen deuten können, . als Zustände gegenüber einem Nullpunkt, . als Punkte auf einer Zahlengeraden, . Erkennen und Beschreiben von Kleiner-Größer-Beziehungen; . rationale Zahlen für Darstellungen in Koord ...

    mehr
  • Die riemannsche (=elliptische) geometrie

    Obwohl Saccheri glaubte beweisen zu können, daß die Winkel im Saccheri-Viereck nicht stumpf sein können, gelang es Riemann eine Geometrie zu schaffen, in der auch dieser Fall eintritt. Um die Arbeit Riemanns zu verstehen, ist es notwendig, ein wenig auf die allgemeine Flächentheorie von Carl Friedrich Gauß (1777-1855) einzugehen. Er entwickelt ...

    mehr
  • Die widerspruchsfreiheit der nichteuklidischen geometrien

    Der Nachweis, daß die nichteuklidischen Geometrien widerspruchsfrei sein müssen, wurde von einem Mathematiker namens Klein erbracht. Es gelang ihm ein euklidisches Modell für die nichteuklidische Geometrie zu schaffen. Er schuf eine Kugel K im euklidischen Raum. "Punkte" sind alle Punkte innerhalb von K. Begriffe wie "Gerade" oder "zwischen ...

    mehr
  • Das alter griechenland

    Die Wurzeln der Philosophie der Mathematik, wie der Mathematik selbst liegen im alten Griechenland. Für die Griechen bedeutete Mathematik Geometrie, die Philosophie der Mathematik somit Philosophie der Geometrie. Für Plato war der Anspruch der Philosophie ein Wissen um ewige und notwendige Wahrheiten zu etablieren. Für Plato war das Konzept der G ...

    mehr
  • Der goldene schnitt in der geometrie

    Der Goldene Schnitt in der Geometrie Auch in der Geometrie wird das mit der Hilfe des Goldenen Schnittes entdeckte Teilverhältnis für vielerlei Konstruktionen benötigt. Ich werde hier einige Beispiele für seinen Gebrauch in der Geometrie anführen. 1. Beispiel: Stetige Teilung Von Euklid wird die stetige Teilung als Aufgabe formuliert: Teile eine ge ...

    mehr
  • Carl - friedrich gauß

    Breite und Tiefe der Arbeit von Gauß zu fast allen Gebieten der Mathematik sowie seine Beiträge zu Astronomie, Geodäsie und Physik reihen ihn unter die bedeutendsten Mathematiker und Naturfoscher ein, die die Menschheit je hervorgebracht hat. Sein Wirken hat während des 19. Jahrhunderts weite Teile von Mathematik und Naturwissenschaften gepr ...

    mehr
  • Mathematik heute

    Der typische Mathematiker ist ein versteckter Platonist, mit formalistischer Maske die er aufsetzt, wenn es der Anlass erfordert. Somit an Werktagen Platonist, an Sonntagen Formalist Was die Grundlagen betrifft, so glauben wir an die Realität der Mathematik, doch wenn uns die Philosophen mit ihren Paradoxa attackieren, verkriechen wir uns schl ...

    mehr
  • Rationalismus

    Für die Rationalisten spielte die Geometrie eine ähnliche rolle wie für Plato, da sie die Vernunft als Hilfsmittel ansahen a priori sicheres Wissen zu erlangen. "Die Winkelsumme eines Dreiecks beträgt 180º" (dieser Satz war Spinozas Lieblingsbeispiel einer zweifellos wahren Aussage). Mathematik, die Erkenntnis des Guten bei Plato, wurde bei den R ...

    mehr
  • Isomorphie

    Ein Grundbegriff der Axiomatik ist die Isomorphie. Gegeben seien zwei Axiomensysteme 1 und 2. In 1 herrschen nun die Relationen R1, R2, usw. Die Beziehungen zwischen den Objekten in 2 werden nun, obwohl sie sich im Sinn unterscheiden, mit den selben Namen versehen, wodurch sie einander zugeordnet werden. Findet si ...

    mehr
  • Die analytische berechnung von dreiecken-

    Der Aufbau . Grundgedanke Das Programm dient dazu, das Arbeiten mit dreieckigen, ebenen Flächen in diesem Teilgebiet der Analytik, Geometrie und Mathematik wesentlich zu vereinfachen, so daß sowohl für Anfänger, Fortgeschrittene als auch für Leute die täglich mit derartigen Problemstellungen konfrontiert werden, ein unheimlich schneller Zu ...

    mehr
  • 19. jahrhundert

    In diesem Jahrhundert kam es zu mehreren "Katastrophen". Eine war die Entdeckung der nicht-euklidischen Geometrien. Weiters die rasante Entwicklung der Analysis, die die geometrische Intuition überrundete, wie die Entdeckung von raumfüllenden Kurven, oder von stetigen nicht differenzierbaren Kurven. Diese harten Schläge für die geometrische Intui ...

    mehr
  • Axiomatisierung

    Der axiomatische "Aufbau" ist eine Entdeckung der griechischen Antike. Das für fast zwei Jahrtausende hindurch gültige Paradigma dazu, die Elemente des Euklid (ca.300 v.Chr.), sind bereits der Höhepunkt einer langen Kette von Versuchen zur heute nach dem Autor so benannten "Euklidischen Geometrie". Das auf Beweis beruhende Wissen (apodiktisch) mu ...

    mehr

 
 





Datenschutz

Zum selben thema
Pythagoras
System
Formel
Geometrie

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.