Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


mathematik artikel (Interpretation und charakterisierung)

Die große woge:





In seinem Farbholzschnitt "Die große Woge" hat der japanische Maler des 18. Jahrhunderts, Katsushika Hokusai, all die Aspkekte der fraktalen Welt, in die wir eintreten werden, aufs herrlichste eingefangen. Diese unnatürliche Welle wird als "Soliton" oder solitäre Welle bezeichnet. Ein Ingenieur und Schiffsbauer namens Russel machte eines Tages im Jahre 1834 eine Entdeckung die ihn sein lebenlang nicht mehr losließ. Durch Zufall ergab es sich, daß ein normales Schifferboot eine Riesenwelle auslöste. Russel verfolgte die Welle bis er sie aus den Augen verlor. Sie sollte zum Ausgangspunkt seiner revolutionären Entwürfe von Schiffsrümpfen werden.



Die Physiker haben eine Technik entwickelt, die es ihnen erlaubt, sich eine beliebig komplizierte Wellenform als Kombination von lauter Sinuswellen vorzustellen. Die Sinuswelle ist die einfachste Form, die eine Welle annehmen kann. Jede Sinuswelle ist durch ihre Frequenz charakterisiert. Fügt man mehrere einfache Sinuswellen zusammen, so erzeugen sie eine komplexere Gestalt. Der Wasserhügel, der eine Welle auf der Oberfläche eines Kanals ausmacht, läßt sich als Zusammensetzung einer Menge von Sinuswellen beschreiben, die alle verschiedene Frequenzen haben. In Wasser pflanzen sich aber Wellen verschiedener Frequenz mit verschiedenen Geschwindigkeiten fort. Weil es nichts gibt, was diese verschiedenen Frequenzen zusammenhalten könnte, verändert der Hügel dieser komplexen Welle seine Form; der Gipfel beginnt sich aufzusteilen und die Hauptmasse zu überholen. Die Auflösung von Wellen in viele kleinere Störungen und schließlich das Brechen im Chaos nennt man Dispersion.







Offensichtlich aber trat in der von Russel beobachteten Welle keine Dispersion auf. Heute weiß man, daß die Welle, die Russel sah, ihre Stabilität nichtlinearen Wechselwirkungen verdankte, die die individuellen Sinuswellen aneinanderkoppelten. Diese Nichtlinearitäten wurden in der Nähe des Kanalbodens wirksam und brachten die einzelnen Sinuswellen dazu, sich aneinander zurückzukoppeln, so daß sie gewissermaßen das Gegenteil von Turbulenz erzeugten. So schaukelte sie sich nicht bis zum Brechen auf, sondern koppelten sich bei einem kritischen Wert die Sinuswellen aneinander. Wenn eine Sinuswelle versuchte, schneller zu werden und aus dem Soliton zu entwischen, so wurde sie durch ihre Wechselwirkung mit den anderen zurückgehalten.



Vergleichbar ist dieses Phänomen mit einem Marathonlauf. Wenn das Rennen beginnt, fangen die Läufer an, sich voneinander zu trennen, und nach kurzer Zeit ist der Haufen weit verteilt. Dies ist genau das, was einer gewöhnlichen Welle zustößt. Eine solitäre Welle jedoch ähnelt der Gruppe der besten Läufer in diesem Rennen. Meile um Meile bleiben sie durch Rückkoppelung miteinander verbunden. Sobald einer versucht, sich nach vorne zu schieben, holen die anderen auf, und die Gruppe hält zusammen.



Russel entdeckte rasch, daß eine hohe, dünne Welle eine kurze, dicke verfolgen und sie einholen konnte. Er fand auch heraus, daß die Existenz dieser Wellen mit der Tiefe des Kanals zu tun hatte. Wäre der Union Canal viel tiefer gewesen, so hätte er sein Soliton wohl nie gesehen. Russel war vorausblickend genug, um klar zu sehen, daß die Bedeutung seiner Translationswelle weit über den Union Canal hinausreichen würde. Es gelang ihm, durch Anwendung der Prinzipien dieser Welle zu beweisen, daß man den Knall einer fernen Kanone stets vor dem Abschußbefehl hört, weil der Kanonenschall sich als solitäre Welle ausbreitet, die eine höhere Fortpflanzungsgeschwindigkeit besitzt.

 
 



Datenschutz
Top Themen / Analyse
indicator Die analytische Berechnung von Dreiecken
indicator Computergraphik: Pixel versus Vector - Pixelgraphik:
indicator Flächeninhalt: Drei- & Vierecke
indicator Beispiele zur Chaosforschung
indicator Ein SW-Bild (1 Bit) sieht Folgendermaßen aus:
indicator Terme vereinfachen
indicator Die große Woge:
indicator Das Drehpendel
indicator Die Untersuchung einer rationalen Funktion (Kurvendiskussion)
indicator Potenzen und Parabeln




Datenschutz
Zum selben thema
icon Funktionen
icon Einstein
icon Pythagoras
icon System
icon Algorithmus
icon Formel
icon Geometrie
A-Z mathematik artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution