Startseite   |  Site map   |  A-Z artikel   |  Artikel einreichen   |   Kontakt   |  
  


chemie artikel (Interpretation und charakterisierung)

Der brennstoffkreislauf


1. Atom
2. Erdöl

Der Brennstoffkreislauf: Arbeitsschritte und Prozesse à Brennstofkreislauf

Versorgung à Suche und Abbau von Uranerzen (Tageabbau und Untertageabbau)

Gewinnung von Uran aus den Erzen

Anreicherung von U-235

Herstellung von Brennelementen und Anlieferung



Entsorgung à Abtransport der abgebrannten Brennelemente

Trennung wiederverwertbaren Spaltstoffes von radioaktivem Abfall

Herstellung neuer Brennelemente aus dem Wiederverwerteten

Verpackung und Einlagerung der Abfälle

Abtransport



Kreislauf à Wiederverwertung der Brennstäbe zur Versorgung. Dabei sind Versorgung und Entsorgung verbunden

Ein vollständiger Kresilauf liegt nicht vor, da immer neues Uran hinzugegeben, und abgebranntes, nicht wiederverwertbares, entfernt wird.



Uranvorkommen

Durchschnittlich pro 1t Gestein, 3g Uran; Uran 100x häufiger als Silber oder Gold zu finden. Erze sind wirtschaftlich nutzbar, wenn sie zwischen 0,1 und 0,5% (100kg-500kg) Uran enthalten. Zu finden in Kanada, USA, Brasilien, Süd- und Mittelafrika, Australien, Frankreich, Schweden und ehemalige UdSSR in Deutschland sind nur kleinere Vorkommen vorhanden. Diese sind im Schwarzwald, Bayrischer Wald, Fichtelgebirge und Erzgebirge zu finden. Wenn Uran mit Gold oder Vanadium (gen. mit Metallen) läßt es sich auch verwerten. In der Erdkruste befinden sich ca. 41*1012 t Uran. ¾ auf Kontinenten und der Rest im Meer.

Der Anteil an nutzbarem Uran liegt bei 6*106 t.

Verbrauch der westlichen Länder p. Jahr ist: 4.5*104t (45000) davon BRD 3.3*103 t (3300). Für 130 Jahre Spaltstoff ist gesorgt, selbst hergestelltes nicht mitgerechnet (Brutvorgang U238 à Pu239).



Urangewinnung:

Durch physikalische od. Chemische Verfahren wird das Uran aus dem Erz gewonnen. Z.B durch rausbrechen und feines zermalmen (physikalisch), oder durch Säuren (chemisch). Mit Säure kann man 90% des Urans trennen, das jedoch nicht rein ist, sondern durch Filtern, Flüssigextraktion etc. herausgefiltert wird.

Durch MnO (Manganoxyd) NaOH (Natriumhydroxid) und NH3 (Stickstoff***) kann man Uran aus der Flüssigkeit filtern. Bei Einsatz von NH3 entsteht nach der Trocknung ein gelber Stoff mit Namen "yellow cake" der 70-80% Uran enthält.



Anreicherung von Uran-235

99,3% U-238 und 0,7% U-235 sind im "yellow cake" enthalten. Für ein Kraftwerk etwa 3-4% U-235. Man wandelt den "yellow cake" in die gasförmige Verbindung UranHexaFluorid um, dabei wird der Stoff durch die chemischen Reaktionen noch mehr gereinigt (um aus 0,7% die 3-4% zu bekommen). Das Gas ist immer noch nicht ganz rein, deshalb wird es durch Filtern und Ausfrieren gereinigt werden. Bei einer Reinheit von 99,5% (UranHexaFluorid) wird es in Stahlbehälter geladen und wegtransportiert.



Herstellung von Brennelementen

Durch ein Naßchemisches Verfahren wird aus UranHexaFluorid Uranoxyd erzeugt. UranHexaFluorid wird mit Wasser und Amoniak und Kohlenstoffdioxid in einen Behälter gefügt, es entsteht Amoniumuranylkarbonat, das sich herausfiltern lässt. Diese wird erhitzt dabei entstehen, Ammoniak, Kohlenstoffdioxyd, Fluaorwasserstoff und Urantrioxyd (UO3). In einer Wasserstoffatmosphäre (Gasbehälter gefüllt mit Wasserstoff) wird es bei hohen Temperaturen zu Urandioxyd (UO2). UO2 ist ein graues Pulver, das zu Tabletten gepreßt wird. Diese werden bei 1700 °C in einer Wasserstofatmosphäre gesintert. (Sintern nennt man Zusammenbacken feinkörniger Substanzen durch Erhitzen bis auf eine Temperatur, bei der die Substanz weich wird). Diese Tabletten werden noch geschliffen, damit sie maßgenau sind. Dann werden sie in ein Hüllrohr aus Zirkaloy gefüllt und mit Helium geflutet. 1-30bar Helium wird reingepumpt, und dann verschloßen. Das ist ein prima Brennstab. Mehrere Brennstäbe in einem Bündel nennt man Brennelemennt.





Wiederaufarbeitung

Brennelemente sind bis zu 7 Jahre in einem Reaktor, und zwar an verschiedenen Stellen, um sie optimal zu nutzen. Manche Elemente werden zwischengelagert in einem Wasserbecken und können später für kurze Zeit weiter verwendet werden. Im Kraftwerk Krümmel werden 120 von 840 Elementen jährlich ausgetauscht, entspricht 21t Uran (die restlichen wechseln sich). Die Zusammensetzung der Urantabletten ändert sich beim einsetzen. Der Spaltstoff U-235 wird z.T. umgewandelt, z.T. gespalten in U-236 (durch Neutronzugabe), wobei die Spaltprodukte radioaktiv sind. Der Verbrauch an Spaltstoff wird Abbrand genannt, obwohl keine Verbrennung stattfindet. Der Grad des Abbrandes (wieviel Spaltstoff entsteht) wird in thermische Energie pro Masse Brennstoff angegeben. Bei Leichtwasserreaktoren beträgt das ca. 33 MegaWattTage pro Kilogramm.

Aus Uran-238 wird Plutonium-239 durch Neutroneneinfang, welches wiederum durch langsam Neutronen gespalten wird. Weil der Spaltstoff abnimmt und Neutronenabsorbierende Stoffe zunehmen, müssen die Brennelemente nach 7 Jahren ausgetauscht werden. Abgebrannte Brennelemente haben eine sehr hohe spezifische Aktivität und sind sehr warm. Zuerst werden sie in Wasser gelagert, im Kraftwerk, wobei das Wasser die Strahlung fast vollständig abschirmt und die wärme aufnimmt. Die Aktivität geht nach 6-12 Monaten auf 0,1% des Anfangswertes zurück.

Die Brennstoffe werden aus den Stäben herausgelöst und in Säure aufgelöst. Bei weiteren chemischen Verfahren erhält man Uran, Plutonium und Spaltprodukte. Dies nennt man Purexverfahren.

Das Plutonium kann man direkt wiederverwenden, Uran-236 jedoch ist nicht zu verwenden. Die Einzelteile (Plutonium, Rohr) der kompletten Brennstäbe müssen sicher endgelagert werden. Würde man die Brennstäbe komplett lagern, würden weniger Radioaktive Spaltstoffe bei der Wiederaufbereitung entstehen, jedoch würde Uran-235 und Plutonium-239 nicht mehr weiterbenutzt werden können.



Konditionierung radioaktiver Abfälle

Radioaktive Abfälle sind Unterteilt in

Abfälle mit fast gar keiner Wärmeentwicklung (Milliwatt)
Geringe Wärmeentwicklung (im Wattbereich)
starke Wärmeentwicklung (im Kilowattbreich bis ca. 200°C)


Konditionieren bedeutet, radioaktive Abfälle, Endlagerungsfähig zu machen. Bei fast gar keiner und geringer Wärmeentwicklung werden sie in Metallfässer gefüllt, oder mit Beton umgeben. Bei großer Wärme werden die Abfälle mit Flüssigem Glas gemischt. Heutzutage lagert man die stark wärmeentwickelnden oberirdisch in gekühlten Edelstahl Behältern, oder in Silkatglasblöcken versuchsweise in Salzformationen (Bergwerk) eingelagert.




Endlagerung

Die Abfallstoffe müssen von der Biosphäre abgeschlossen sein. Dies geschieht durch mehrfach Einschluß und stabile Lagerformen. Für den mehrfachen Einschluß sorgen Lagerbehälter und z.B. Gesteinsmaterial (Bergwerk). Bei der Endlagerung darf kein Grundwasser in der Nähe vorhanden sein, es dürfen keine Risse und Klüften im Gestein vorhanden sein, und nur geringe seismische Aktivität. Im Salzstock Gorleben sind alle diese Gesichtspunkte erfüllt. Es wird Endlagerung von geringem und fast gar keiner Wärmentwicklung getestet. Im Salzbergwerg bei Wolfenbüttel (Asse 2) werden Lagerungstechniken getestet. Abfallprodukte zur Herstellung des yellow cakes oder andere Umwandlungsverfahren müssen aufgearbeitet werden, damit keine Schadstoffe in unzulässigen Konzentrationen vorhanden sind.




Transporte im Brennstoffkreislauf

Der Transport des Uranerzes ist unproblematisch. Yellow cake wird in Stahlfässern mit 200-400l Fassungsvermögen transportiert. UF6 (Uranhexafluorid) wird in Druckbehältern befördert, da es schon bei 56,5 °C gasförmig wird. Die Behälter müssen dabei dicht bleiben, da UF6 eine hohe chemische Toxizität hat. Es ist jedoch nur sehr gering aktiv. Es muß eine Unkritische Anordnung bei Transport und Lagerung gewährt werden, so daß es nicht zu einer Kettenreaktion kommen kann. Keine Transportwege entstehen bei UO2 (Urandioxyd), da es direkt in Brennelemente weiterverarbeitet wird, die dann in Transportbehältern zum Kraftwerk gefahren werden. Auch hierbei ist nur geringe Aktivität vorhanden.

Der Transport muß sehr sicher sein, da in den Brennstäben enthaltene Spaltprodukte eine hohe spezifische Aktivität (hohe Kernumwandlung) haben und sehr heiß werden. Der Transportbehälter ist aus Stahl und hat Kühlrippen oder Kühlstifte und ist 5-7m lang und hat einen Durchmesser von 1,8-2,5 Meter. 1-6t Transportgut kann er aufnehmen (ein Brennstab ca. 5,71t) und wiegt dabei zwischen 32 und 105t (der Behälter). Er muß sehr hohen Anforderungen gerecht werden in Bezug auf:

Mechanische Stabilität (aus 9m auf eine Stahlplatte mit Betonuntergrund bzw. 1,2 m, auf einen Stahdorn von 15cm Höhe)

Dichtheit (8Std bei 90cm unter Wasser) und


Temperatur (30Minuten bei 800°C)

in der BRD, USA und GB noch aus 600m auf Wüstenboden und der Zusammenprall des Behälter mit einer Lok bei 130 km/h.

Bei der Wiederaufbereitung fallen Spaltprodukte (mit Wasser gemischt), Uran und Plutonium an. Feste Spaltprodukte können in den gleichen Transportbehältern wie die Brennelemente transportiert werden. Da sehr hohe Temperaturen entstehen, müßen zum Teil Zwangskühler eingesetzt werden. Auch entsteht durch Radiolyse (Zersetzung) des Wassers Sauerstoff und Wasserstoff, wobei ein starker Druck entsteht. Plutonium wird in kleinen Behältern transportiert damit die Plutoniumlösung nicht kritisch wird (damit´s nicht durchbrennt), dieser Behälter ist in einem Stahlrohrkäfig, damit der Abstand gewährleistet wird.

 
 

Datenschutz
Top Themen / Analyse
Arrow Veranschaulichung des Bohrschen Atommodells und des Energiebändermodells und Erläuterung des Dotierens
Arrow Allgemeine Informationen über die beiden Farbstoffe
Arrow Bor - Ein vielseitiges Element
Arrow Kohlenhydrate - Versuchsbeschreibungen
Arrow Hauptgruppe des Periodensystems der chemischen Elemente
Arrow Carbonsäure alles Wichtige
Arrow ZERKLEINERN
Arrow Koffein
Arrow Gentechnik (wurde in Form eines Plakats präsentiert)
Arrow RECYCLING


Datenschutz
Zum selben thema
icon Organische Chemie
icon Masse
icon Laugen
icon Aluminium
icon Saurer Regen
icon Salze
icon Polymere
icon Biogas
icon Kohlenhydrate
icon Alkene
icon Isotope
icon Kohle
icon Spülmittel
icon Geschichte
icon Ester
icon Enzyme
icon Definition
icon Alchemie
icon Gewinnung
icon Luft
icon Mol
icon Energie
icon Ethanol
icon Elemente
icon Glas
icon Säuren
icon Brennstoffzelle
icon Ozon
icon Basen
icon Nomenklatur
icon Alkohol
icon Methan
icon Alkane
icon Metalle
icon Erdgas
icon Biographie
icon Ether
icon Akkumulator
icon Seifen
icon Elektrolyse
icon Allgemeines
icon Oxidation
icon Fette
icon Reduption
icon Halogene
icon Benzol
icon Periodensystem
icon Chemische Reaktionen
A-Z chemie artikel:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #

Copyright © 2008 - : ARTIKEL32 | Alle rechte vorbehalten.
Vervielfältigung im Ganzen oder teilweise das Material auf dieser Website gegen das Urheberrecht und wird bestraft, nach dem Gesetz.
dsolution